
rrJn^fy^JT^prj^^y^j^fj^^ -ji.r^-^-A-,/^-y._-v,^r/.7J..vJ-v - - -

CNJ

c if)
CD

rs
j rs
i
i
1
1 <
. i

G
<

i

■

.

^

^ ■

■

« •
■ i

•

■ ■

■

■ ■ ■

(D

• .

i»

■

■

;

.

g2
o

APPLICATION OF HALSTKAD'S TIMING MODEL

TO PREDICT THE COMPILATION TIME OF

ADA COMPILERS

THESIS

AFIT/GE/ENG/86D-7
v

Dennis M. Miller
Captain. _ USAF

■

rf'

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

DTIC
ELECTE
MAR 1 3 1987

C
Wright-Patterson Air Force Base, Ohio

BET TE»
fcrpafeBo
dUtrtbathnls MHWH* 87 3 12 077

• y~r / ^r^r^-^^^-j"r t .'v-;)i-!>.;)«-• JTFST?" IT« tTfV« l"ii^"i'l'V"l.'V\-in"Vtnrv7VWW"l'^~ ^'i V ^.T^'i. "f H-l *."> «ti "ti ^1 «TB-V <Ti«.'i«.Ti,-(.-*n-ii',n*^M.Ti4,TTiT^j

ff

AFIT/GE/ENG/86D-7

APPLICATION OF HALSTEAD'S TIMING MODEL

TO PREDICT THE COMPILATION TIME OF

ADA COMPILERS

THESIS

AFIT/GE/ENG/86D-7 Dennis M. Miller
Captain USAF

f^

bö/ I

Approved for public release; distribution unlimited

^sK>^^^-:^^^^^^-^^^ ..._.* -A^_ 4 ' J

PT1^^:'.^ W,nN^T^V.^^\\^TVA^1.^.VV^A<^..MA?ll^^'^^^1^^' ^ "■". -L' ^'^ ^'■jr,^,JrJ-^r^T1,^vy"rTrT:"rry.-rJ^.--^rirvr^^i

^Jji, AFIT/GE/ENG/86D-7

APPLICATION OF HALSTEAD'S TIMING MODEL TO PREDICT

THE COMPILATION TIME OF ADA COMPILERS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements of the Degree of

Master of Science

Dennis M. Miller, B.S.

Captain, USAF

December 1986

Approved for public release; distribution unlimited

W^VjWWfVFJ.*8^''ii.^f'TiVi^'i'J"~ w?^^r^?'fr+T*:""?V."iriwjy ^vjm^rm-rj^VYVJirgy.'j-yw-j T}-ri'^^wyjriT}:wK^T',^^: 1£\«,T VlTT f.'>v.TTTX.T^'\l

i *

w

Prefagg

The purpose of this study wi. to determine the

applicability of using Halstsad's Software Science theory to

predict compile time and evaluate compilers for Ada. The

need for more objective tools in evaluating software is

becoming more apparent. I think the results of this project

are useful and will serve as a baseline for future

comparisons. It may be the tool that many researchers,

managers, and evaluators have been searching for.

I wish to thank a number of people who helped me complete

this research project. In particular, Dr. Wade Shaw, my

advisor, and Or. Jim Howatt both of whom reviewed this work

during its development and provided countless helpful

suggestions. Without Dr. Howatt*s assistance, I would have

still been counting operators and operands in Ada programs.

Deep gratitude is expressed to Dr. Shaw, who was

instrumental in providing the guidance and directions I

needed to finish my research effort. I would like to give a

special thanks to Captain Deese of the Information Systems

and Technology Center at Wright-Patterson AFB, Ohio, who

found time in his busy schedule to give me information and

instructions on the Data General computer. I am also

indebted to Captain Robert S. Maness; a fellow AFIT student,

my friend and partner; for his support and patience in

getting the research data necessary to complete our

v<tv respective projects. Finally, I can not forgot the most

important person in my life, my wife to be, Amy Bass. Her

i
 >

.•-•'-■:•■-^T-.-.On-r---,v^ov.rji-f^rl^k.<^T>j<V'f^jr>.'r^ir^«rZf^V-^..^vtC.^.»f^^J^v^-wr.A,/..v-w-.w-.-,i-w^-«■-J^£~^*.J^J-JJL^Jtrj..;.«TUr.«.;-k?^. J

Bnj^y^y^yy .^ ,y ■^-y7yn^/^Wyj^:"tf(ri>OTgTF.-yt wjvn.' nnr TT^T Kr^r^rsrr^r'T^rf Y^U^tr» Tf "WT.TTJT? T^i r 7

.^5
patience and continuing support to me deserves more than the

usual amount of credit. The encouragement I received from

her was Inspirational. I couldn't have done It without her.

—1
—s
 \ \

-1

yyjf.

111

b^i^^^^^^^u-^^^^^^

Table of Contents

'vw> Page

Preface i i

List of Figures vi

List of Tables vii

List of Acronyms viii

List of Symbols ix

Abstract x

I. Introduction 1

Background 3
Problem 6
Scope 7
General Assumptions < . 8
General Approach 9
Sequence of Presentation 10

II. Halstead's Software Science Theory and Its
Application to Compilers 12

Halstead's Software Science Theory... 12
Review of Counting Strategies 19
Acceptance/Criticisms of Halstead's Work 22
An Application of Software Science to
Compilers 25

III. Research Methodology 31

Model Proposals 31
Model 1 - Time 32
Model 2 - Length (Linear) 33
Model 3 - Length (Non-Linear) 34

The Experiment Design 35
Data Selection 36
Identification/Enumeration of Operands,
Operators, and I/O Parameters 37
Computer/Compiler Selection 40

Computer Environment . 41
Compiler Time Measurements 43

Unix Environment 46
AOS/VS Environment 47
VMS Environment 49

Statistical Analysis 50

'-".-•'.■ IV. Test Results and Discussion 55

iv

iJ, ■;A^&^:^>^^^^

rffvyvjnPT'nirl«V* V* VJ^6^i^yifl"Trv"rt^^^T^^.^rl',r^'^nr^T^'T^ni^T^'L^,\'vv'%"\'tX%13"'l'%l■vi^l^ \"v"-%^."~ i-%i "v, VA.wvn.^rx'vi^w^■v-\-vi -v\.-v WL-JI.

m

V. Conclusions and Recommendations,

Conclusions....
Recommendations

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix 0

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

Appendix N

70

71
73

Different Counting Strategies 76

Ada Programs to Demonstrate Counting 78

Sample Data Sheet 82

Data for the Compile Time Study 84

Where to Begin 88

Actual Compile Times 89

Macros Used in the Experiment 93

SAS Data File for Analysis 1 95

SAS Command Files for Analysis 1 96

SAS Data File for Analysis 2 98

SAS Command Files for Analysis 2 99

Sample SAS Output 100

Actual vs Predicted Compile Times 104

Plot of the Actual vs Predicted
Compile Times 108

Bibliography Ill

Vita 114

^ #

^■;tft^^:^x«-;^i^^

ISmxA)n"jr^> •>T>'1>jiT\)rT^:-T3nv»A3« fJtr-» i">' 'jr-vrv fy nnrvrjirvnji -*. rw n* r> .-^<'T?(.r3nfy^ ru" -^ rir rj-. v -v i-^ ,-V>..^R r^i TU -^ -^ '\ä nir i *«J w IWTJWVI in i.™ »-u »T...»

(f^

*

Liat of Figures

Figure Page

2.1 Components of a Generalized Compiler 27

3.1 ACEC Compilation Order 44

4.1 Compiler Model Comparisons 56

4 .2 Halstead Model vs Compiler Model 60

4.3 UNIX Compile Time:
Actual vs Model Prediction 63

4.4 ACS/VS Compile Time:
Actual vs Model Prediction 64

4.5 VMS-ISL Compile Time:
Actual vs Model Prediction 65

4.6 VMS-CSC Compile Time:
Actual vs Model Prediction 66

4.7 CPU Performance Comparison 69

vi

I
-T- I

■TV. p m, ■ y. ^'^t'^yv w ^\K\K \\'*.wr.v.V[*rv,.WK\'V. H.^A" v^T^ri^^^wr^rgfJ'VJ ^ v; ■f^r*j^Fm*rvj^rfwrwTKwm!'*.!wj'i

Si

List of Tables

Table Page

2.1 Halstead's Software Science Measures 13

3.1 Ada Counting Strategy 38

4.1 Mathematical Models for Compile Times 55

4.2 Error Reduction in Predicting Compile Time... 57

4. 3 Parameter Estimates 58

4.4 Correlation Between Observed and Predicted
Compile Times 61

4.5 Residual Error Comparison 62

4.6 Parameter Estimates for Pooled Data 67

4 . 7 Compiler Evaluation 68

5.1 Correlation Between Actual and Predicted
Compilation Times 71

m
Vll

mmtj&mms£^&^

WIWl^Vl^VlV.V^W^^AT^^.V^^A^^^

List of Acronyms

♦

ACEC

ADE

AFIT

ANSI

ASC

ASD

bpi

CPU

CSC

DEC

DO

DoD

E & V

IDA

I/O

1pm

ISL

LRM

MIL-STD

RTS

Ada Compiler Evaluation Capability

Ada Development Environment

Air Force Institute of Technology

American National Standards Institute

Academic Support Computer

Aeronautical System Division

Bits per Inch

Central Processor Unit

Classroom Support Computer

Digital Equipment Corporation

Data General

Department of Defense

Evaluation and Validation

Institute for Defense Analysis

Input/Output

Lines per Minute

Information System Laboratory

Language Reference Manual

Mitilary Standard

Real-Time Support

Vlll

r> VvV V 'A'." V V .•^.-V ,-7J- V .• V V .• > '." ".■ V '.- 'w. ,»,W V .- i- '.■ 's ' '■■ •• ',- > V V '.- V\- '.■ ',• V V .-V '.- ■,• *'s- >\-vv V .-'

^yj^.yyy^y.j-^^yy.yTyjTT'^.. i.-y:-T-.i Ti •*%"■*■ jv*;ri*'i "i ^jyi'fy11.1.'» j* 'j wg^^-T^^r^.,'j^ '^.T^ r'/v^■ii.v^-y.T^ TT1
^«n»/.''^ ram.^■v^r^TOTTm^n.'VL'yi

List of Symbola

E - Effort

L - Level of Implementation

Lhat - Estimated Level of Implementation

m - Total Number of Unique Operators

na - Total Number of Unique Operands

n - Vocabulary

na* - Input and output parameters

Ni - Total Number of Operators

Na - Total Number of Operands

N - Length of a Program

Nhat - Estimated Length of a Program

S - Stroud Number

T - Time

V - Volume

Vhat - Estimated Volume

V« - Potential Volume

ix

'tftämteXtt^^

'iv\r*7^*7wrj*.rvriwv^*'WTi^.yj'w^\r\\%w"-K^^

AFIT/GE/ENG/86D-7
:-;

Abstract

With the development of Ada, the official programming

language of the DoD, methods are needed to validate and

evaluate various Ada compilers to determine if the compilers

meet the DoD requirements. This investigation introduces a

new tool using Halstead's Software Science theory to predict

compile time and to evaluate the efficiency of alternative

Ada compilers.

The analysis was accomplished by selecting a model based

on Halstead's time equation. Once the model was

established, programs from a benchmark test suite were used

to evaluate the predictive power of the model and to develop

a performance index for comparisons.

The results suggest that the compiler model is useful in

predicting compile time, but of more importance, it is

useful in the development of a performance index. The study

shows that the average compilation time is not a good

measure for comparing performance rates. Therefore, with

further research, the compiler model may ba a useful tool

for software analysts.

::•

Iti®!^^

p^^!V^iPW|JWt,i:wl,WTfW^

APPLICATION OF HALSTBAD'S TIMING MODEL TO PREDICT
THE COMPILATION TIME OF ADA COMPILERS

T]

I. Introduction

Technological advances in computer software are changing

our society. Computer systems are becoming more numerous,

more complex, and deeply embedded in our society. We can no

longer simply write programs, but must engineer software for

our systems to help offset the rising cost of software

development (9:8-9). The Department of Defense (DoD)

recognized this challenge and realized that a new standard

^' language and its environment (i.e. compilers, loaders,

library managers, etc) had to be created to encourage the

use of modern software engineering techniques (4). As a

result, the Ada programming language was developed. With

the introduction of this new standard programming language

for the DoD, software engineering tools are needed to

evaluate the performance and reliability of programs written

in this language. These tools are more important today

because millions of dollars of equipment, and even lives may

depend on the proper execution of these computer programs.

Ada (4:1-21) was developed under sponsorship of the DoD

to support the development of software for embedded computer

:-"'.<. systems. For example, one area of use will be in the field

of avionics. In the development of avionics software,

1

r* W 15! «^l1 I^TW'JllVlHJP'l'.WL1»1 !»B-W^ ^W5.-.^, Vl^ ".«:iA-A,,,.''-.T\"f.%' r.^,^'\,E.\'^T\T%T^"'A\V^ Vt.^^-^rL^J^-BT^li^ri«B^«\>^%-^-k"VL-V\''rv.'VLN^-V"v.>',

&
efficient compilers are needed. Therefore, new tools,

besides benchmark test suites, are needed to evaluate

compiler performance (good code, optimization, compilation

time, etc). Benchmark test suites have a bad reputation

because the performance figures are sometimes cited out of

context and overgeneralized into overall ratings (20:31).

One possible new tool for determining a performance index

for compilation time in compilers is to use an extension of

Maurice Halstead's Software Science theory.

Maurice Halstead developed a theory called Software

Science with the objective of making sound judgements about

software quality and complexity. Software Science theory

(9:13) is based on the fact that algorithms can be measured

by their physical characteristics, i.e. the number of

distinct operators and operands and the total number of

operators and operands within the computer program. Using

this assumption, Halstead was able to develop several

mathematical formulas that accurately express several

attributes of algorithms. One of the formulas, the

programmer time equation, developed from Halstead's study

can be used to express the amount of time required for a

programmer to translate a predefined algorithm into a given

computer programming language.

It is interesting to speculate about other uses of

Halstead's formulas. For instance, the human translation of

an algorithm into a programming language can be considered

"cv* to be similar to the process that a compiler goes through to

)&&&£^

m
Background

In the 1970's, the DoD (4:1-21) recognized a need for a

standard, high-order language to reduce the cost and effort

to develop and maintain military software systems. However,

a suitable language did not exist that met all the

requirements. As a result, the DoD sponsored a development

effort to produce a new language which has become known has

Ada, after Lady Augusta Ada Byron, the world's first

programmer.

According to Booch (4:44), Ada is a strongly typed

language that provides a rich set of constructs for

describing primitive objects and operations, and in

v
'•1

translate a computer program into executable machine code.

Given that Halstead's formula can predict the time required

for the human translation process, it is interesting to

speculate if it can be used to accurately predict the time

required for compilation of a program. If this can be done,

performance evaluation can be performed on compilers to

determine their efficiency. Consequently, software science

may be a possible tool for analyzing compilation times.

This paper describes a research effort to determine if an

extension of Halstead's theory on predicting time is

applicable to Ada compilers, and thereby able to provide a

performance index for comparisons. If so, objective

decisions on at least one metric of compiler performance is

possible.

'teWtftertrtf^^

^MK&KGiximf^imximwimMmwmm mwrnw wmmwMr&vwmwmmwm w K* FJ» W» '> «JI '^ ^v'v* V^^CT w» vv^p»"^-;

t^

addition, offers a packaging construct with which we may

build and enforce our own abstraction. Features such HS

exception handling, parallel processing, real-time control,

and information hiding, makes Ada a language useful for many

diverse applications.

The various modern language features incorporated in Ada

are intended to improve software quality and increase

programmer productivity. The language seems promising.

However, for Ada (25) to serve as the official language for

DoD, compilers need to be developed which conform to the Ada

language specifications and produce efficient object code.

As a result, methods are needed to validate and evaluate

various compilers in order to determine which could best

meet OoD requirements.

In validating and evaluating compilers, performance

information such as compilation time, memory space

requirements, object code generation, error checking, etc

must be analyzed. Currently, benchmark performance test

suites are used. For example, the Ada Evaluation and

Validation (E&V) team collected numerous test routines from

the public domain to provide users with "1) an organized

suite of compiler performance tests, and 2) support software

for executing these tests and collecting performance

statistics" (12). This test suite is called the Prototype

Ada Compiler Evaluation Capability (ACEC). Currently, the

ACEC is not completed; it fails to test all the features of

the language.

4

>,

t'^::^Ä^;^^:^.v^v , . A^: ^ofc^^ta^^^

!luJ lA 1MM!^WH«'^.T^

Benchmark test suites are useful in evaluating compilers,

but tests must be complete and repeatable. The ACEC

measurements, for example, "... are only an indication of

the effect produced by an Ada language feature when it is

used in a particular compiler/run-time combination. These

measurements are not absolute performance metrics of the

efficiency of a particular compiler architecture" (12).

Benchmark test suites have a bad reputation because the

tests are sometimes misapplied, incorrectly performed, or

inadequately documented (20). Therefore, other methods are

needed to make objective decisions in evaluating compilers.

For example, the performance metric, compilation time, is a

perfect example to use in the development of a mathematical

model to determine the performance of various compilers.

The author is not suggesting to replace benchmark test

suites for evaluating compilers; however, using an extension

of Halstead's Software Science theory may provide evaluators

the tool to make consistent and objective evaluations of at

least one performance metric - compilation time. This model

could be more useful than using the average compilation time

to evaluate compilers.

.-..«.... LW -'■ - » ^ . ^^ ^V ^^ - ■ - . - ■ ^ . - > - . - ■ - » -V ^ ^ —■ ^ . ^ 1 - A - . ■ . - * ^ % - - . ^ . ', . A - » - -P - - - . ^ ^_,^^_tJ^J^jMfc^^_^^-^^

rTVI'V*." VIT r« »^ ■«.i:«.!«.-' i;i v^ H_n K;-!»^1«,! '-\'f7r7^^,T7^Fr[7%a-^7VrL'^^v^^T,^L,vi-v--,vl
uv.'V-l-v^-.'.-. .> .-• -■,-« •.-»im ir'i-^sn;¥i»jrn*-.-i>3«rj- ,-JIrj»r*■W-'Wr*nf.rv,

O

According to Halstead (11:3), Software Science is defined

as follows:

Software Science is concerned with algorithms
and their implementation, either as computer
programs, or as instruments of human commun-
ication. As an experimental science, it deals
only with those properties of algorithms that
can be measured, either directly or indirectly,
statically or dynamically, and with the relation-
ships among those properties that remain in-
variant under translation from one language to
another.

Halstead (10:4) undertook his study on the properties of

algorithms (computer programs) with the objective of making

quality judgments about the size and the programming effort

required to create them. Specifically, he was interested in

predicting the time and effort required for a programmer to

write a program, the length of the program, and the number

of programming errors generated. He developed a theoretical

framework based on the number of operands and operators in a

algorithm and demonstrated that the theory can be validated

(14:13-35). A detailed discussion on Halstead's Software

Science formulas is presented in Chapter II. The question

now is - can Halstead's model of programming time be used

for compilers?

ggahlM

The problem addressed in this thesis is to investigate

the predictive power of Halstead's model of Software Science

^AV. in estimating compilation time across alternative Ada

compilers.

.L-,1 >a:&^:;^rt^^

WW^^^M'JFAJ W3W ^ ^''fLV^T^iil^l!.^ WW ^ l!.^ W W.'^^T^'gl:^ "^ V ^ \i V W '^ 'U-w vj.'wyir'f; y j 'yi'-'i*.1 vj '^ '^ i V.HT yj"^:' ^^. ^

«

gOffitt

This study concentrates on the compilation process,

applying concepts developed by software science. Since Ada

is the new DoD standard for programming languages and is of

high interest in the military community, this thesis focuses

on Ada compilers.

The purpose of this investigation is two-fold: (1) To

determine if there is significant difference in the

predictive ability of Halstead's model of Software Science

in explaining compilation time among alternative Ada

compilers; and (2) To determine if there is significant

difference in the discrimination rate across alternative Ada

compilers. With this in mind, this thesis will:

(1) Develop Halstead's Software Science theory and

its application to compilers.

(2) Develop a counting strategy for Ada. select a set

of Ada programs, and select a set of Ada compilers.

(3) Design a statistical model and performance

index.

(4) Analyze the model, test the hypotheses, and

summarize the results.

^W^f^f^^^lW^TOt^^^VPW^Wl^WWVWW^^

■vvs
.•V v-

General Aaaumntiona

Compilation time is influenced by many factors. For

instance, how a compiler is written will affect the

compilation effort - one-pass, two-pass, and/or optimized or

not, etc. Halstead's mathematical model for programming

effort is based on properties of the programming language,

not on the ability of the programmer. It seems reasonable

to approach the compilation effort in a similar fashion.

Correlation of data from this study with the theoretical

estimates is used to Justify the extension of Halstead's

model in predicting compilation time. The Justification for

this assumption is that Halstead's model performs well

(11:46-61) in predicting the time for a programmer to

translate an algorithm from a mathematical model into some

high order language. It then might be assumed to be a good

model for estimating compiler time, since a compiler is

performing the same function as a programmer - translating

an algorithm from one level language to another.

For the purpose of this study, all compilers examined

have been validated, all programs used compile correctly,

and all compilation times are the results of no

optimization. Additionally, the discrimination rate

Halstead used to describe the programmer speed is assumed to

be the translation or processing rate for a compiler.

ira^i^m^^^ *Z*i
y

pjj^rrfl-^jj^Pfl^TJIVST^^^ ^-n-B^-BA-rv ^^^rpr,

ciS

>TN

Although this study does not cover compiler design,

properties of algorithms, or different languages, success of

this investigation might generate further experiments

designed to test the extension of Halstead's model for

predicting the time for the compiler to translate a program

from one language to another.

General Approach

Halstead's model of Software Science was used to propose

a general model for predicting compilation time. An

experiment was designed to collect data. This data was used

to estimate the unknown variables of the mathematical model

and to test relevant hypotheses.

The experimental design required that the algorithms be

selected with a wide range of software science metrics. The

algorithms were compiled on four different computers having

Ada compilers and the compilation times were recorded. A

major issue was measuring the compile time as accurately as

possible. On a multi-user computer system, compilation time

cannot be measured simply by a stop watch because of the

contention with other users. Therefore, total CPU time used

in the compilation process was used. This time was obtained

from the list or history file generated by the compiler.

The software metrics necessary for the proposed

mathematical model were extracted from the algorithms

manually. This required a set of rules for the

\\^ identification and enumeration of each operator, operand.

htä&xtä^^

!wm^wnM^w;!virJvvvwt^''rvm^^

m

if*

and I/O variables in each program. A program was measured

by applying the counting rules; and then, based on the

resulting parameter values, the various software metrics

were calculated. At this point, several mathematical models

based on software science metrics were proposed in

predicting compilation time for a compiler. The models were

then evaluated using the analysis of variance method and the

linear regression tool on the SAS software package for data

analysis. Besed on this evaluation, one model was selected

for further analysis.

The model was used to test two hypotheses:

(1) There is no significant difference in the

predictive ability of Software Science in explaining compile

time across alternative Ada compilers.

(2) There is no significant difference in the

discrimination rate across alternative Ada compilers.

The correlation, or lack of correlation, of the

estimates with the actual compilation time will indicate the

merit of using Halstead's Software Science theory in

predicting the time to compile an Ada algorithm. If there

is a correlation between software science and compilation

time, then the development of a performance index may become

a valuable tool for DoD, in validating and evaluating Ada

W compilers.

10

ij&v^&::&^

pjrFy^^.TOr"VTir«rvsrvv\^viv\m •-. ^J ^ «r^

ft

Sgquenog of Prgggntation

Chapter II provides an overview of Halstead's Software

Science theory. Since software science is based on the

operators and operands of a software program, a discussion

on counting strategies is given. In addition, a review of

published findings covering both acceptance and criticisms

is presented. Finally, why software science can be used in

explaining compilation time for compilers is discussed.

Chapter II was written with the cooperation of Captain

Robert S. Maness (17), whose thesis validated the use of

software science in explaining compiler time.

In Chapter III, an explanation of the research methodology

used to evaluate Halstead's Software Science to analyze

compiler time is presented. Chapter IV, contains the

results of the experiment. Finally, Chapter V, the

conclusions and recommendations, summarizes the results,

describes the worthiness of the compiler prediction model,

and recommends areas for further study.

11

i

tTXTiP'Tf TTTTP'-W-T-'

Ü'

II. A Review of Halstead*a Software Science Theory
and Ita Application to Compilera

Maurice Halstead, in his classic work on Software Science

(11)• attempted to define and measure the complexity of

software by using mathematical models. With these

mathematical models, Halstead was able to predict software

engineering metrics such as the number of errors in a

program, the programmer's time for implementation, and the

difficulty of implementing a program. The theory's accuracy

in predictions has been shown to be both adequate and

inadequate (10; 11; 23).

The first section in this chapter presents the theory

applicable to this investigation to provide a background for

the model to be presented in Chapter III. The second

section reviews different counting strategies. In the third

section, the acceptance and criticisms of Halstead*s work

are discussed. Finally, the last section describes the

application of Software Science theory to compilers.

The Theory of Software Science

Software science was developed to measure the properties

of algorithms. Halstead (11:5-6) defined four basic metrics

that are capable of being counted or measured:

nx = the number of unique operators; (2.1)
na = the number of unique operands; (2.2)
Nx = the total number of occurrences (2.3)

of operators;
^>t Na = the total number of occurrences (2.4)
HSJW of operands.

12

tetttä^^^^

in

According to Halstead, operands are defined as the variables

or constants that the implementation employs. While

operators are classified as the symbols or combinations of

symbols, such as mathematical symbols, delimiters,

punctuation symbols, et cetera that affect the value or

ordering of an operand (11:5). By counting the number of

operators and operands or tokens in a program, software

science attempts to measure the programming requirements,

the initial error rates, the quality and the complexity of

software, and the productivity of programmers (10:3-5; 11).

Table 1 summarizes Halstead's measures which are relevant to

this study.

TABLE 2.1

Halstead*s Software Science Measures (11:2)

(1) ni = Unique Operators
(2) na = Unique Operands
(3) Vocabulary =n=ni+n3
(4) Ni = Total Operators
(5) Na = Total Operands
(6) Length = N = Ni + Na
(7) Est. Length = Nhat = (ni « loga(ni)) +

(na * loga(na))
(8) Volume = V = N « loga(n)
(9) Est. Volume a Vhat = Nhat * loga(n)

(10) Potential Volume = V« = (2+na«)*loga (2+^«)
(11) Level of Implementation = L = V« / V
(12) Est. Level = Lhat = (2 « na) / (nx « Na)
(13) Effort =B=V/L=V»/V,
(14) Programming Time =T=B/S=V«/(S*V«)

13

I

^■"yr.VAv' rv ■:■ ■■"■, ■.' 'y • ym." ■.* v'.' v^ ■> '.'• '■'''y ^' i-»; '.■• ''.'^.^ ■• ^ '•■''■■■ '.^^'-■• '.^ .^ ••. •■• * '■■- '.■■|:■• .■• ■■• .^ '.'•'.•-'.■- A A A■.'• .v.vw ■/.i

fc

Using the basic metrics above, Halstead (10:5; 11:6)

defined the vocabulary n of a program to be the total number

of unique tokens:

n = ni + na (2.5)

and the length of a program to be the total number of

operators and operands:

N = Ni + Na. (2.6)

•

Halstead (10:6) hypothesized that the length of a program

is a function only of the number of unique operators and

operands. Other characteristics of a program are defined

using these basic terms. Drawing on intuition, Halstead

(2:774) used an analytical procedure and a probability model

of software generation to predict the length of a program.

Halstead determined that as a program with n unique and N

total operators grows in size, by increasing the number of

unique tokens, the total length will grow logarithmicly;

n*logan. Based on this conclusion, and that the length of a

program is the sum of the operators and operands, Halstead

(10:5-6; 11:9-11) defined the predicted length or the length

estimator as:

Nhat = (m * logani) + (na * logana). (2.7)

14

l>i>:tf>i^^^^

Bwjiw'wwmwvmm^rv^

The size or volume of a program may vary when translating

Si* from one language to another. For example, converting a

higher level language such as Ada into a lower level

implementation code (machine language) requires more volume

than translating a lower level language into a higher level

language. Higher level languages usually have more

operators to allow for more compact expressions; and as a

result, shorter programs. Halstead (10:6-8; 11:19; 23:156)

surmised that the volume of a program is a function of its

vocabulary and is given by:

V = N « loga(n), (2.8)

where V has a unit of measurement in bits. In other words,

logt(n) bits are needed for each of the N tokens in a

program to choose one of the operators or operands for that

token.

Programs may be implemented by many different but

equivalent codes. When an algorithm is implemented in its

most succinct form, then its potential volume V« (11:20-21;

23:156) is

V» = (2 + at«) « loga(2 + na«), (2.9)

where na* is the number of input/output (I/O) parameters.

This represents the size of the program if it existed as a

built-in function or procedure call. The constant 2

15

s

'*XpJ?17V.V^VJVf^W'^JlW"j;"*™^ ■ÄT«3T'«7s,VOT?nr»u*v»'m

.».
represents the minimum number of operators for any algorithm

vys to perform the function. One operator is the name of the

function or procedure and the other is an assignment or

grouping symbol used to separate the list of parameters from

the function or procedure name. The variable n»« is the

minimum number of unique operands (I/O parameters) needed to

implement the function. The value for na« is harder to

obtain because what constitutes an I/O parameter may be

difficult to conceptualize. Halstead describes na' as

follows:

(1) The number of conceptually unique arguments
and results (or input and output parameters)
required by a given algorithm. Therefore, it is
only necessary to count the parameters listed in
a call when an algorithm is Implemented as a simple
procedure, or as a subroutine, and for which a call
on that procedure has been written, and provided
that result operand names are listed explicitly.

(2) For the cases in which an algorithm is
implemented as a straight routine to be executed
directly, na* is determined by examining the
implementation and by counting all the operands
that are "busy-on-entry" or "busy-on-exit" of an
algorithm from the implementation. (11:28)

According to Halstead (10:8-9; 11:25-30; 23:156), the

level of implementation is defined as the ratio of potential

to actual volume:

L = V« / V, (2.10)

where L is less than or equal to one. The closer the volume

V is to the potential volume V«, the higher the level. The

v£v higher level languages such as Ada should have a value

16

PtTKTiTR^w^iTUTrfTrf^rrj?vwwww^JW^r^wy,r

closer to one than a lower level language because the lower

VC»* level language usually requires more operators and operands

to do the same Job. Note also that the failure to use a

language properly could result in a lower level of

implementation and a higher volume.

Halstead (10:9-10; 11:46-61) hypothesized that a program

is generated by making N * log2(n) mental comparisons.

Therefore the volume is a count of the number of mental

comparisons required to generate a program. Each mental

comparison requires a number of elementary mental

discriminations which are defined as the reciprocal of the

level of implementation - 1/L. Halstead then concluded that

the total number of elementary mental discriminations or

effort B required to generate an algorithm is given as: m
B = V / L. (2.11)

The effort of programming increases as the volume of the

program increases and the effort decreases as the level of

implementation increases. In other words, the larger a

program, the more difficult the effort; the higher the level

of implementation, the easier the effort. Recalling

Equation 2.10, L = V« / V and substituting in Equation 2.11,

the effort equation now becomes:

B = V» / V«. (2.12)

17

^•'^•" y//v-v-y-v ^••yvvjy;. .v-.^^^

"S.'V'JT «r*X^'il;T ».'"TTTTf »TJ^-S^Ti'^^-itT IJ^^.""*" "*» <"" 4 T «. I"^ " K TTlTXTti." ^.^XF~<tf» "T» "TiJ «TTT^ "'<■'•-»(^TLT ■■«■.Tmw »'.n t "1 «'." ».•» I -1 If.T 1-5 y

<f

v0

Equation 2.12 indicates that the effort required to generate

a program with a given potential volume varies with the

square of the actual volume in any language. With this

equation, Halstead determined the number of mental

discriminations or decisions completed by a programmer when

implementing an algorithm.

As stated in the introduction, a major claim of software

science is the ability to predict actual programming time.

Halstead (10:9-10; 11:46-61; 23:157) determined that the

amount of time required to implement an algorithm is

directly proportional to the programming effort E divided by

a constant 'S'.

T = B / S,

or

T = V« / (S « V«), (2.13)

where the constant 'S' represents the speed of the

programmer or the number of mental discriminations per

second of which the programmer is capable. Halstead (10:9-

10; 11:48-49; 23:157) called 'S' the "Stroud number" because

a psychologist, J. Stroud proposed that the human brain is

able to make mental discriminations at a finite rate

(between 5 and 20). Halstead uses a value of 18 because in

his experiments, 18 gave him the best results when comparing

predicted versus actual programming time. Software science

hypothesizes that Equation 2.13 estimates the time required

18

!:'^^V?W.TVI_
,I
J^^LV.^M_

,
-I _^^

for a programmer to implement an algorithm under certain

conditions (23:157):

(1) A single, concentrating programmer, who is

knowledgeable of the programming language;

(2) Only a single module is written;

and (3) The program must be pure (10:6; 11:38-45).

Good programming practices usually insures a pure program.

Halstead defined six impurity classes:

1. CANCELLING of OPERATORS! The occurrence
of an inverse cancels the effect of a
previous operator; no other use of the
variable changed by the operator is made
before the cancellation.

2. AMBIGUOUS OPERANDS: The same operand is
used to represent two cr more variables in an
algorithm.

3. SYNONYMOUS OPERANDS: Two or more operand
names represent the same variable.

4. COMMON SUBEXPRESSION; The same subex-
pression occurs more than once.

5. UNNECESSARY REPLACEMENTS: A subexpression
is assigned to a temporary variable which is
used only once.

6. UNFACTORBD EXPRESSIONS: There are
repetitions of operators and operands
among unfactored terms in an expression. (10:6)

Review of Counting Strategies

Since Halstead's theory is based on the counting of

operators and operands within a program, a discussion of the

method of recognizing and categorizing these tokens is

appropriate. As stated before, Halstead (11) defined

operators as symbols or combinations of symbols that affect

19

il^i>:W>>^A^-:^

10\ '

Biw\wi\ayy|w'y^vyp*Tvc^^^^ ^■T^TI

the value or ordering of an operand, and an operand is

> * defined as being a variable or constant.

In a paper discussing Halstead's work, Elshoff (8:30)

criticizes these definitions as not being specific enough

and states that questions still remain about counting of

operators and operands. In another paper, Salt (21:59-60)

echoes Elshoff's comments about ambiguity resulting from

Halstead's definitions. Salt cites the counting of the IF

... THEN ... ELSE construct as an example. One researcher

considered this construct to be a single operator, but a

second researcher claimed that the IF ... THEN and the ELSE

were two distinct operators. In yet another paper, Misek-

Falkoff (18:86-88) offers another example that is not easily

resolved by using Halstead's definitions. That example is m
X = Fl (F2 (Y)),

where F2 is an operator with respect to Y and Fl is an

operator with respect to F2(Y). It is unclear here whether

F2 should be counted as an operator, as an operand or both.

As pointed out by Beser (2:51), every experiment involving

Halstead's work seems to use a counting strategy which is

unique to that experiment. This difference in counting

rules used by various researchers make comparison of their

empirical results a difficult job.

Several experiments have beer conducted to determine what

impact, if any, different counting strategies have on the

I
20 ^

■

l^P7'v,K«^TTnr,!K,!^Z*V^T^l^T^T*T^Ti'S^^^ UVVsrv^.T.-tT. N ^^ T. HT. -V\ ■% '„"t T ■V'"',,V^ ■% ^

'&'/'

0

software science metrics. Elshoff (8:30,40) counted a

collection of 34 PL/1 programs using 8 different counting

methods and found that the effects of the various counting

methods varied depending on the characteristics being

measured. Some of the metrics such as length, N, and

volume, V, changed very little while level, L, and effort,

K, varied significantly. He concluded that although no one

counting scheme could be shown to be the best, the results

did indicate the importance of the counting method to the

overall measurement of an algorithm. In a separate study,

Conte (5:118,126) modified Halstead's method of counting the

GOTO construct. His results showed that this modified

counting strategy had minor effects on N, Nhat, and V, but

that it had significant impact on m, Nj, Lhat, and B.

In addition to the lack of consensus on how to count

operators and operands, there is disagreement on what parts

of a program should be included in this count. Halstead

contended that declarative statements should not be included

in the counting process and most research (13:59) has

followed this lead. However, Kavi and Jackson (13:57,71)

conducted an experiment with 'C language programs in which

declaration statements were included in the operator and

operand count. They justified this departure from the

normal practice by contending that declarative statements

are an important part of an algorithm in most programming

languages, and to a certain extent they determine the

v'v structure and complexity of programs. They state that this

21
i
I

"0

i

line of thought is in accordance with the accepted belief

that "Algorithms + Data Structures a Programs". From this

point of view, the "algorithm" is the part of the program

that is typically counted and the "data structure" is the

declarative part that typically is not counted.

Salt (21:60) seems to convey the contemporary view on

counting strategies when he says:

There is clearly a need for more information about
counting strategies in research papers. Certain
aspects of the strategies require special attention.
Although short descriptions of operands are accept-
able, the same cannot be said about operators.
Comprehensive descriptions of operators are required.
General statements to the effect that operators are
comprised of reserved words and special symbols are
inadequate. Such statements leave too many unanswered
questions. In PASCAL for example, is the reserved
word NIL an operator? Particular attention is also
required in the consideration of symbols with more
than one function. For example, in FORTRAN, a set of
parentheses may be used to delimit expressions,
arguments, or subscripts. A counting strategy must be
clear about how many unique operators are involved.

At this point, the presentation of Halstead's theory of

Software Science ends and a review of the published findings

begins.

Acceptance/Criticisma of Halstead's Software Science Theory

To become an effective tool for software engineers,

Halstead's theory on Software Science must accurately

predict information about a software project before the

coding stage. Halstead (11:51-53) investigated the

predictive power of his formulas by asking a computer
•y.

scientist, who was fluent in three languages (FORTRAN, PL/1, '.'':

22 :-:
■
.■»■

p->-? -v^T-f-p v r •ii-rf'frjrmyrryi> IT» 'fc^V^ V^ V>'\'Vu^\.'V\"V:infV*n/V\.^iT.^^%'i ^ri^.^v\ tn IT «A'CV'^."! fi n.TH'i » TutsnT« ■T.--t«x.Tu^iLTHJT»jnj TWTV wv TV ■■»TWTUI

^N^''

and APL), to program, in each of the three languages, 12

algorithms from the Communications of the Association for

Computing Machinery. Using the software science equation in

estimating programming time, Halstead predicted the time for

the programmer to finish the Job. The relationship between

actual vs predicted programming time was very strong - a

correlation of 0.94. The actual programming time was 14.68

hours, which compared well with the predicted time of 15.45

hours.

In another experiment, R. D. Gordon (10:11-13) measured

the number of minutes needed to implement a program fully;

this included the time to read the problem statement, to the

finished product with no errors. The predicted time was

within 3 percent of the actual total time with a correlation

coefficient of 0.934.

Research conducted by the Computer Center of Purdue

(11:14) observed that Halstead's work can predict the length

of programming time, number of programming errors, and the

quality of the final programs. Other independent

statistical studies conducted by Kerlinger (10:10), Campbell

and Standley (10:10), and Elshoff (11:14-16) have tested

Halstead*s forumlas with impressive results, thereby

enhancing the validity of his works.

A. Fitzsimmons and T. Love (10:10-17) discovered a

pattern in all the experiments they reviewed concerning

software science. This pattern seemed to indicate that

w^4 there is a correlation of the effort measure with many

23

v^^

factors that affect programming projects such as programming

time. Software science may be a possible tool to answer the

questions considering the difficulties of programming and

the causes of high software cost.

Although early studies have shown impressive results,

software science has not been universally accepted (23:157-

164) and is not being widely used outside the academic

arena. Some have questioned the validity of the

experimental data. In most cases, the sample size and

programs were small. The experiments did not involve

professional programmers, but a few college students who may

not represent the typical programmer. The assumption that

the human brain is capable of making a constant number (S)

of mental discriminations per second is questionable

(23:158; 6). Few psychologists today agree with the 'Stroud

number' because of lack of empirical results.

As mentioned in section two, defining and counting

operators and operands has been a major issue of concern

because these tokens are the basic foundation of software

science (23:157). The results of the experiments may depend

on these definitions. For example, Halstead ignored the

declaration section and other nonexecutable statements of

the algorithm. Some have argued that nonexecutable code is

a major part in determining programming time and must be

counted. To make matters worse, classifying a token as an

operator or operand may not be clear. The meaning may

depend on the use of the token at execution time, i.e. a

24

 $1

p^wq^yu^Ui^i'iijrgr^Tm^^

m

function name may serve as both an operator and operand.

Others have also suggested grouping operators, because

different operators have different impacts. These

ambiguities in interpretation of operators and operands may

result in different values for some of the software science

metrics (see Appendix A for an example of two counting

schemes). Therefore, a standard counting strategy needs to

be developed for languages in order to make valid and

consistent decisions from the experiments; otherwise,

experimental results will continue to vary and prove to be

useless for project managers.

R. Wolverton noted (26:484-485) that Halstead's work is

too advanced to be any practical use in estimating software

production; however, if Halstead's theory is properly used

and understood, it might be useful at some future time. One

possible application is applying his theory to explain the

compilation effort resulting in a performance metric which

researchers could use to evaluate different compilers.

An Application of Software Science to Compilers

Although Halstead developed his model in an attempt to

predict, among other things, the amount of time it will take

for a computer programmer to write a given routine, it may

also be useful to predict the time required for a

compilation of that same routine. This section discusses,

in general terms, the components of a compiler and the steps

involved in the compilation process. Further, it

25

1

py^^T^^^'^ryT^'I^^T^'y^''^ ^^^'^^'''■)T'"•''I'''■'''T^T^T'■ ^Tr77?;v.^vy V'^?>^'\V'>l\^,:y^^^ii/u^^TVA"L^:^l^^^^r.^^^^X^;iCT

demonstrates that the compilation process and the process of

a programmer writing a program are similar enough that it is

reasonable to investigate the ability of Halstead's model to

predict the time required to compile a given routine.

A compiler can be defined (24:5) as a translator which

transforms a high-level language such as FORTRAN, PASCAL, or

COBOL into a particular computer's machine or assembly

language. A programmer can also be thought of as a

translator because he transforms an English language problem

statement into a high-level source language that can then be

processed by the compiler.

A compiler has two major phases (24:6-11): analysis of

the source program and synthesis of the object code for that

program. Fig. 2.1 depicts this structure as well as the

major sub-phases involved. This structure may vary between

individual compilers and between compilers for different

languages, but it is representative of a generalized

compiler.

Analyala Phase. The major function of the lexical

analyzer is to scan lines of the source program and separate

the text into a sequence of tokens such as constants,

variables names, reserved words, operators, and punctuation.

This sequence of tokens is then passed to the syntactic

analyzer which groups the tokens into larger syntactic

classes such as expressions, statements, or terms. If the

syntax analyzer determines that the token sequence is not

26

.^^^^^^

wywyrwyrvirpTK'y»VPJJ'\ yy ty^zyyv^^yy^rv^^l^^.^^i^^w,^^^^^ fVTCVlfl

ÜT'

SOURCE
PROGRAM

OBJECT
PROGRAM

7"\

\s.
ANALYSIS PHASE

Lexical

Analyzer

"TK"

Syntactic

Analyzer

Semantic

Analyzer

7 v^

^

SYNTHESIS PHASE

Code

Generator

Code

Optimizer

 TT?

JfcL

TABLES

Fig. 2.1 Components of a Generalized Compiler. (24:6)

syntactically correct, it generates an error message. If

the sequence is in the correct format, a syntax tree or

equivalent structure is built for that sequence. The syntax

tree is then passed to the semantic analyzer. The semantic

27

afcfr&>^:^^^

analyzer determines what actions are being requested. The

semantic analyzer may produce some form of intermediate

source code which will be passed to the synthesis phase of

the compiler. Several structures, such as a symbol table,

are built during the analysis phase of the compile process.

A programmer goes through similar steps in preparing to

write a program, although in reality he probably performs

them in parallel rather than serially as the compiler does.

His lexical analysis probably will not break the problem

statement down to the level of individual tokens, but he

will break it down into paragraphs, sentences, and phrases

to generate ideas and concepts about the structure of the

problem that is to be solved by his program. The

programmer's final step in the analysis phase is to perform

a semantic analysis to understand exactly what the problem

statement is asking for. As in the compiler process, tables

and other structures mty be built to aid in completion of

the overall task. Logic diagrams, truth tables, and

flowcharts are examples of these structures.

Synthesis Phase. The code generator, the first step of

the synthesis phase, translates the data received from the

analysis phase into either assembly language or machine

language. In more sophisticated compilers, the output of

the code generator is passed to a code optimizer where the

code is evaluated to determine if it can be restructured to

V^ make it more time or space efficient.

28

b^^^i^M^^

IW.'JV.1 •,.l■^l-,. W'*.A f •p.•'."■'.'••.I•,.,•■'•■.'*■''•,•-■• J•J• •.■ «.v,■.'-■ •-1.,■ ■ ■ .■ ■.■• -^.■.■.■.,.,.^,.,^• «.■>'.■'."WV-H-^TRWV"

«•

A programmer also takes the results of his analysis phase

^ and generates an output, the high-level language program.

He may then analyze his program, much like a code optimizer

would do, to see if some of it may be implemented more
■

efficiently. In the case of the programmer, the search for

efficiency is probably on-going during the entire synthesis

phase.

Conclusion. There is not a one-to-one correspondence

between all actions taken by the compiler and the

programmer, but there are certain parallels. Both must

input data, analyze that data to determine its validity and

meaning, and determine what action that data is requesting.

They both must generate a product, in a language different

than that of the input data, that conveys the same

information as the input data. Because the programaing

process and the compilation process have a number of

similarities, it seems reasonable to expect that Halstead's

model might predict compilation time.

Programming time may vary depending on the programmer's

well being, state of mind and many other factors. As a

result, the value of 'S' in Halstead's time equation,

T = V* / (S * V*), is questionable since a programmer's

discrimination rate or programming speed may vary day to

day. In contrast, compilation time is solely based on the

host computer and the program to be compiled. Therefore,

'V -■
'^\ the discrimination rate or, in this case, the translation

29

_ |

iJ"wWTHlWW^Tir rJl.^w'Twrw■r&nJ••nJ^WTJ^rJl7'J^~7•J^r■-r*.^^^^*:•v^v^}l^*^\I^^rm^rw\^ -V.«-«I.T. I-WT-WI -WT»,«

rate or processing speed of a compiler may be more

deterministic. Consequently, an extension of Halstead's

model may predict compile time even better than it predicts

programming time.

Having presented the theory behind this thesis effort,

the research methodology can now be presented.

30

r^.^*lw^*'JXW^v^M*e*&lWiWi*iTfrd »'I ■'•, ■*■■'''- '••.- •*:•■?.' '*: ■J^,'y.,^^: v.; '^ j *:'■> :'*" T'.^^^':' ^^ ^J ^-v.1 ^Ttrg^J r;y4 ^"»-v^.r^^grr- r^ 'CTgr-aa

^^.

ill. Research Methodology

The extension of Software Science theory to a compiler is

straight forward. Like a programmer, a compiler translates

a language from one level to another. Consequently, it

seems reasonable to apply a form of Halstead's programmer

time equation to predicting the compilation time for a

compiler. If a mathematical model can be developed, an

important role for the compiler performance model would be

to predict the compilation time for compilers. However,

even more beneficial, would be the ability of the model to

compare performance rates of various compilers.

This chapter describes the methodology involved in

analyzing software science as a possible tool for explaining

compiler time and for the development of a performance

index. The first section presents the mathematical models

investigated in this research effort. The second part

describes the experimental design to validate the extension

of software science to compilers.

Model Propoaala

Software Science theory served as the basic theoretical

framework for predicting compiler time. Three mathematical

models for predicting compiler time will be presented;

first. Model 1 based on the time equation; second. Model 2,

a linear model based on program length; and finally, Model

3, a non-linear -»odel based on program length. Model 1

31

^wwm^^ Fw"^V.^J^7^rn?nyrTHT3n«jr?nin'.r" \-» \-« t-« v

utilized program volume and potential volume Just as

Halstead envisioned. Models 2 and 3 made use of Halstead's

definition of length as defined in Chapter II. Although

length is not part of Halstead's theory for predicting time,

length is a common complexity measure used in estimating

time to complete a task. Therefore, Models 2 and 3 were

investigated for the purposes of comparing the predictive

power of these models to Model 1. It is assumed for all

models that a program to be compiled is syntactically

correct and the program length, N, is greater than zero.

All the models were analyzed to determine which, if any,

were best suited for predicting compile time.

(fs Uad&LJL - Llaiag. Software Soiencg 11ms. Equation» Model i

used Halstead's programming time equation as the basic

theoretical model. The equation was specified as a set of

independent variables related by a set of parameters to be

estimated. The dependent variable is the actual CPU time

required for the compilation process. The volume, V and

potential volume, V* are the independent variables.

Referring to the Time Equation 2.13,

T = V« / (S « V«),

and placing it in parameter form yields:

m T = K » V« « (V»)«» (3.1)

32

■A^^^, v...... :^ .v. •v.v.v^v>v>v^v^-/-v->>>^^

^T\T\n V^XT^T^T^Ttf^TTTV T? TJ r^.^^

;ö.

This equation is exactly the same as Halstead's time

equation if *K* is a fraction, 'a' is 2, and 'b' equals -1.

'K' has the same meaning in the compilation process as the

constant 'S' in Halstead's equation for predicting

programmer time. 'K' represents how fast the compiler does

its Job (the processing rate) or its discrimination rate.

'K' will depend on the computer architecture and the

efficiency of the compiler itself. Clearly 'K' can be

interpreted as a performance index given that 'a' and 'b'

are known. Or, 'K' can be used in an estimation role to

distinguish compilers.

Model 2 - IdHULtk: ü (linearK It seems reasonable to

assume that the more operators and operands in a program,

the more time the compiler must expend on resources. This

linear relationship can be shown as follows:

T = a « N, (3.2)

where "T* represents compilation time and 'a' is some

constant multiplier. As in Model 1, the dependent variable,

'T', is the actual CPU time required for the compilation

process. However, in this case, the independent variable is

the length, N.

33

It
|

^fe^V^^^^

F!>fV',Tv,^v»\.Cv>\V^7??t7T;^?T^^ ,_,, „,,

-^

Model 3 - li£ii£Üi: ü (non-linear) » Compile time may not

behave In a linear fashion as a function of length. A

common complexity measure for determining programming time

Is lines of code (LOG). "It Is generally accepted that a

program requiring more lines of code will take

'proportionally' longer to Implement than another program

requiring fewer lines" (21:160-161). It then seems logical

that compiler time would behave In the same manner - the

longer the program, the longer the compiler time. To relate

the lines of code measure to actual programming time, a

formula of the following type (21:160-161) can be derived

using regression analysis:

T = a « LOC«>.

Using the same logic and replacing LOG with Halstead's

definition of the length of a program, the model now

becomes:

T a K « N*. (3.3)

where T represents compiler time. Again, the dependent

variable Is the actual GPU time required to complete the

compilation process. As In Model 2, N Is the Independent

variable related by a set of parameters to be estimated.

34

*i3**l*i9\W.^.w^'Kw^***'\tm"*\\^'SVrS*9^^V-V

0

Uaing Parameter Eatimatea. Halstead envisioned that

obtaining the actual counts for some algorithms may be

difficult or impractical. Therefore, Halstead defined

estimators for certain parameters such as the length of an

algorithm. Consequently, Halstead's measures can be divided

into calculated and estimated equations. To determine the

effect of these estimators, each model described above had

two cases: one based on the calculated, and the other based

on the estimated values. In Model 2 and 3, N was replaced

with Nhat and was calculated using Equation 7 from Table

2.1. Model 1, Equation 3.1, replaced V and V« with Vhat and

Lhat from Table 2.1 where

1) Vhat = Nhat « loga(n),

and 2) Lhat = (2 « n») / (m » Na).

The Experiment Dcaign

The experiment required a rich set of algorithms written

in Ada. Next, the various software science measures

described in Chapter II were calculated. This required the

identification and enumeration of each operand, operator,

and I/O variable in each program. The programs were then

compiled on four computers using different compilers and the

time to compile was recorded. The model equations were

transformed to the linear models. Then using linear

regression techniques in the SAS program package, the models

were analyzed.

35

t^^v^yy^

Rftf'w^yjw^f^LWwy-WW^'M'^

. <■,

Data Selection. For the purpose of this investigation it

was desirable to select a database that would guarantee that

the results were statistically valid. Therefore, the

desired approach was to use published or production

software. The ACEC's programs seemed to be the perfect

candidate for this study since DoD sponsored the creation of

this benchmark test suite to validate and evaluate Ada

compilers.

ACEC consists of a series of public domain test programs

collected by the Ada E&V team for the Ada Joint Program

Office. The programs provide information about language

features that must be present in a compiler if it is a full

implementation of the ANSI/MIL-STD 1815A. (12:3)

A copy of the ACEC test suite was obtained from SofTech,

Inc., at the address below, who was contracted by the Air

Force Wright Aeronautical Laboratories to distribute the

programs.

SofTech, Inc.
Attn: Mr. Michael C. Hill
3100 Presidential Drive
Fairborn, OH 45324-2039

Approximately 300 modules currently exist in the test suite.

The programs are divided in two categories called normative

tests and optional tests. The normative tests (12:3) j

'!yC"/ provide a means for determining system cost for a particular

language feature, that is, collecting information on the
r

36

Wfvyn'V?^^^%,<^\^T*r*[.^l*l*^^

Ä

speed, space and the limitations of the Ada compiler. On

the other hand, the optional tests (12:4) provide

measurments of features that are not a required part of the

Ada compiler.

Of the 300 test programs, 171 were selected for this

investigation. Programs were eliminated if they included

pragmas, or they were similar to other modules, i.e. the

vocabulary and length were the same.

Identification/Enumeration of Operands. Qperatora. and

I/O Parameters. Before any data could be analyzed using the

software science metrics, a suitable set of rules for

counting operators, operands, and I/O parameters had to be

devised. In Halstead's original work, only executable

operands and operators were counted because the theory was

intended to analyze algorithms, not programs. However, a

compiler must process all the tokens (operators/operands) in

a program and can expend substantial resources translating

data types, declarations, tasks, etc. Therefore, in this

investigation, the counting strategy had to be expanded to

include all tokens. Due to the importance of the operator

and operand counting definitions, the counting strategy

implemented is summarized in Table 3.1. See Appendix B for

examples of counting Ada programs. For a detailed

description of this strategy, refer to Captain Maness's 1986

thesis (17) on validating an extension of Halstead's theory

37

a^&^&äma^^

WVVTi^VSVWTFrVVWir'Tr^jrV^^ -j.--^ ^ r* -»-^

TABLE 3.1

ADA COUNTING STRATEGY

1. All entities in a module are considered, except
comments.

2. Variables 1 constants, literals are counted as operands.
Local variables with the same name in different
procedures/functions are counted as unique operands. Global
variables used in different procedures/functions are counted
as multiple occurrences of the same operand.

3. The following pairs of tokens are counted as single
operators:

And Then Array Of Begin End
Body Is Case Is When End Case
Declare Begin End Do End
Elsif Then Exception When For In Loop End Loop
For Use Function Return If Then End If
Limited Private Loop End Loop Or Else
Record End Record Select End Select Subtype Is
While Loop End Loop

4. The following tokens or pair of tokens are counted as
single operators subject to the accompanying conditions:

+ is counted as either a unary + or binary ♦ depending on
its function. A unary + is not counted when it is a
part of a numeric constant like +3.14.

is counted as either a unary - or binary - depending on
its function. A unary - is not counted when it is a
part of a numeric constant like -2.15.

() is counted as either (1) an expression grouping
operator, as in '(x+y)/z, (2) an invocation
operator, as in xx :s SQRT(a), (3) a declaration
operator, as in Procedure xx (a:in real), (4) a
subscript operator, as in x = I(J), (5) a
dimensioning operator, as in k : array (1..6) of real,
(6) an aggregate operator, as in x : f_type :=
(others «> ' *), (7) an enumeration operator, as in
type color is (red,green,blue), or (8) a conversion
operator, as in int := integer(real_variable).

' (apostrophe) is counted as either (1) an attribute
operator, or (2) an aggregate operator. A pair of
apostrophes used in character constants, such as 'x' is
counted as a single operator.

38

krt&ÜKtä^^

-y > r > /■ ■» r:>' TOT" ST in« im 'ir» ^'K \.-« vr« \rv\m \.nr\-* =JV •■JT» \rv WT-^T ■%-, WI ^^."«.I *.^ H.T R^TCT «.-I » -I «« -I »-i

Table 3.1

ADA COUNTING STRATEGY (cont-)

in is counted as either (1) a mode operator»or (2) a
membership test operator.

or is counted as either (1) a boolean operator, or
(2) an alternative operator in select statements.

null is counted as either (1) an operator if it appears
in executable code, or (2) an operand when used as
a constant.

private is counted as either (1) a declaration operator, or
(2) a detail operator.

separate is counted as either (1) a declaration operator, or
(2) a detail operator

5. The following tokens are counted as single operators if
they are not used in rules 3 and 4:

« / «« & • •
• • • • •

» /= < >
<> ■ = > > = < = • •

<<>>
»t n

* * abort abs
accept access all and at constant
delay delta digits else end entry
exception exit generic goto is
mod new not out others package
procedu re raise range rem renames
return reverse task terminate type
use with when xor

6. Procedure and function calls are counted as operators.
Also nested function and procedure calls are counted as
operators.

7. Type indicators are counted as either (1) an operand in
its own declaration statement, or (2) an operator if it
types a variable, function, or subtype.

8. 'Package/Procedure/Function Is New' is called a generic
instantiation operator and is counted as one unique
operator.

9. I/O Parameters are either (1) formal parameters within a
subprogram specification, (2) function names, or (3)
parameters that are passed globally and referenced within a
module.

39

fc:fc^>i>^^^^

»n^-Ajrv<"^J^J'^jr^j^-:T^:>^jr«^^ ir*-\f*\nKAnf\ni'\nr\7M\ni-yi-vMTt\.-%*-*'.-*A -wm-w-i^*^ -^-i -w ̂ n ^. ^ "^t^Km^K^Kmammimmm^amm

m

to Ada compilers. He includes the logic behind the

development of this strategy, including how input and output

parameters were counted.

Once the rules were established, the next step was

obtaining the values of the software science parameters.

Therefore, each program was counted manually to determine

ni, na, n»«, Ni, and Ni. The number of unique and total

occurrences of tokens in each program were recorded on a

data sheet (see Appendix C). Since manual counting is prone

to error, the programs were counted twice. Capt Maness

helped in the counting since he used the same data in his

study. Appendix D summarizes the results of this effort.

Computer/Compiler Selection. Selection of a computer had

to meet two criteria: 1) the computer had to be located on

Wright-Patterson Air Force Base and be accessible for this

research; and 2) a validated Ada compiler had to be

available for the selected computer. As a result, four

computers were selected:

1) The AFIT Academic Support Computer (ASC), a VAX 11/785

computer using the Verdix Ada compiler.

2) The AFIT Information Systems Laboratory (ISL), a VAX

11/780 computer using the Digital Equipment Corporation

(DEC) Ada compiler.

3) The AFIT Classroom Support Computer (CSC), a VAX

11/785 computer using the DEC Ada compiler. \
B

40 'k
I
> „

 ./
f\;^^T'(Lü^\,1.0> *JV1 Nr *w* *** %" *." V •-^ •■', %'■ "V' *' "•' *^ * * *-r' '•*' *' S' "V V N*1 V" '■", s" %" V •/ '^ *,"' •-'",' •/ ^ * - * O- * ^ - ^ •v<;-> TM*\J X* M* ^ ■* \'-** *** *^m * ' ^

VWl*WÜMV^WWW)lvWirf'WV'''l'J'-y- ^i '^ ^■' 'A' v} yj g,;vr.' 'TI W.;T^'
I
'

,
."»

,
?

I
T'

!
JT''.' ^'r-jiy?iv';-T-';i^T;,rj ^r»->;T-.i.rJ:,*s:ygT'T^x^^ »JI X?^ ^.^.Ty^^i

St

4) The ASD Information Systems and Technology Center, a

Data General (DG) MV-8000-II computer using the ROLM/DG Ada

Development Environment (ADE) compiler.

Procedures for gaining access to these resources are

described in Appendix E.

Computer Environment. The ASC is a multi-user system

located in the School of Systems and Logistics. It is a VAX

11/785 computer running the Berkeley 4.2 UNIX operating

system. The hardware configuration consists of one 800/1600

bpi tape drive, three 456 megabyte disk drives, and one

electro-static printer/plotter. The central processing unit

is 32-bit with main memory consisting of 8 megabytes.

Currently, version 5.1 of the Verdix Ada Compiler is

installed on the system. The system supports 32 user

terminals and 10 remote user terminals. Peak load occurs

during the day from 0900 hrs to 1800 hrs with an average of

20 users. During 0200 hrs to 0600 hrs the load drops to an

average of 2 users.

The DG MV/8000-II computer system is managed by the

Language Control Branch, located in the ASD Information

Systems and Technology Center (ASD/SI). The central system

consists of a 32-bit central processing unit with 8

megabytes of real memory. Secondary storage devices include

two 354 megabyte fixed disk drives and two 800/1600 bpi tape

^s* drives. Listings can be printed on a 600 1pm printer. The

41

{jL^k&i &fr^a^^^

F.WJ '-P'-WJjjViwv/w^i wwwira ^fvwjyj ^riwr*. <" KT «." *?sr V.^^'^-T^ wr*1^ r^ 'r1 tnTT» i'jr^7y7yr7^rr^rrTS7r^TrT^T^TT^TrrrriT,
J

rT^^

^ system currently supports 24 user terminals operating under

'v the AOS/VS version 5.6 operating system. Version 2.30 of

the Ada Development Environment including the

ANSI/MIL-STD-1815A version 2.30 Ada compiler is installed to

support the development of the Ada programs. This computer

is mainly used for programmer training and evaluating Ada

programs. System usage varies from 0 users to 10 users.

The computer is idle most of the time.

The ISL computer is housed in room 245 in building 640,

the School of Engineering. This VAX 11/780 computer is a

32-bit machine with 8 megabytes of main memory. The

hardware configuration includes a 1600 bpi tape drive, three

500 megabyte fixed disk drives, a 250 megabyte Winchester

drive, a x-y plotter, and a laser printer. The system

currently supports 16 user terminals and one remote user

terminal operating under VMS version 4.4 operating system.

Version 1.2 of the DEC Ada compiler is installed on the

system. Since this computer is mainly used for research,

usage varies like the DG computer.

Finally, the CSC, located in the School of Systems and

Logistics, is a VAX 11/785 computer running version 4.3 of

VMS operating system supporting 32 user terminals and 10

remote user terminals. This system contains an 800/1600 bpi

tape drive, a 600 1pm printer, two 456 megabyte disk drives,

one 256 megabyte disk drive, and 8 megabytes of main memory.

The DEC Ada Compiler, version 1.2, is installed on this

W system. Like the ASC, the CSC is a busy system supporting

42

^^^^F^^y^^^^^^^^T^y^^y^^'y j> ■^■y.ny wy vj»u \i'* i < y T'.^J.T^ t T ^ |i'.' ^.^J ^V^" I^ i^ v '^ \y 'y ^ i'?'.^ \^' fy v^.^^7

/.y,f faculty, students and AFIT staff personnel. System usage

Sv"

ir

varies from an average peak of 20 users during the day down

to an average of two users in the early mornings.

Compiler Time Meaaurenenta» A major issue in this study

was measuring the time of the compilation process for a

program as accurately as possible. On a multi-user system,

compilation time cannot be measured simply by a stop watch

because of the contention with other users. As a result,

CPU time instead of wall clock time was used. The CPU times

for the DG, ISL, and CSC were obtained by looking at the

list or history file generated during the compilation

process. Besides giving information about the compilation

of a program, the file contained the amount of CPU time and

wall clock time used to complete the compilation process.

Although the ASC Ada compiler generated a similar file, the

amount of time used was not given. Consequently, another

method had to be devised. In this case, the UNIX system

command 'time' was used which provided information on the

total CPU time to complete a process.

Having each computer dedicated to this experiment would

have been ideal. Since this was impossible, the programs

were compiled three times each during a period when the

number of users/processes on the computers were at the

lowest. Therefore three experimental replications were

completed. The results of this effort is summarized in

Appendix F.

43

L I

m^l^WPJlUlL^L^W^^imT^A^^^^

The ACEC benchmark test suite required the programs be

compiled in a certain order as shown in Fig. 3.1. As

indicated by this figure, the test routines required the

programs lO^PACKAGE, CPUJTIME, and INSTRUMENT, repectively,

to be compiled before the test routines. These modules are

library packages used by the benchmark test modules.

During the initial checkout to make sure the programs

compiled on each computer, it was discovered that the time

to compile would increase as the library size increased. As

much as five seconds could be added to the CPU time if a

program was compiled last instead of first. Therefore, to

have the same environment for each benchmark test program.

LISTJV ICKAGE

SCHI

/

DATABASE A

\
U

•M

\

m

NQ

K

\

RIBUTE IO PACKAGE CPU TIME

/ \/
UIRY INSTRUMENT

1
1

REPORT_WRITER
1

BENCHMARK TESTfr)

(eg. ADDSA1)

Fig. 3.1 ACEC Compilation Order (12:11)

44

^^■^rh^^t^f^^^

the newly compiled teat module was deleted from the library

each time before the next compilation began. The programs

were all compiled in batch mode. Basically, the batch Job

for each system consisted of the following:

1) Clean library directory - only the standard Ada

library routines were presented at this time.

2) Compile in order IO_PACKAGE, CPUJTIME, and

INSTRUMENT. (Note: compilation times for these programs were

recorded)

3) Compile one benchmark test module such as

ADDSA1, BALPA1, etc.

4) At the completion of the compilation process for

the benchmark test module, delete all files generated,

except the file containing the CPU times.

5) Repeat 3-4 until all programs are done.

6) Clean all files generated during the compilation

except the standard Ada library routines.

7) Compile in order the following routines: LIST_

PACKAGE, SCHEMA, DATABASE, ATTRIBUTE, IO_PACKAGE, INQUIRY,

and then REPORT_WRITER. (Note: These programs are not part

of the benchmark test programs but provide the user the

means of collecting statistics for the test suite. In this

study SCHEMA, DATABASE, ATTRIBUTE, IO_PACKAGE, INQUIRY, and

REPORT_WRITER are part of this database to be analyzed.

LISTJPACKAGE was not included because it contained pragmas

but it had to be compiled for use in the other programs.)

8) Repeat step 4.

45

kk^&fc^jv^

tT«rT,J.^H.^v^^T*r!Trw"-r?«TUTJ^/wi "w^rj^r*miTfL.nr.rr-~'*."*~-j*rvr+.r&rpnp -^rj« a«"V^AKrtn.Aj«,^>irjif7<j»7'ji"JI^T^^""tr",V» ir^irwI

.,:-.

All compilation times were than recorded, and the files

v' containing the CPU times were deleted. Then steps 1 thru 8

were repeated two more times. Since each compiler has its

own method of interacting with the user and the host

operating system, the environment for each system is

described below.

UNIX Environment. To be properly set up for running

the Verdix Ada compiler on the ASC, the '.login' file must

contain the path /usr/local/verdix5.1/bin. A test directory

containing all the programs to be compiled was created.

Each program needed a '.a' suffix for the compiler to

recognize the source code to be compiled. The 'a.mkllb' was

used to make an Ada Library directory in the test directory.

This utility created the necessary files and subdirectories

where all files created and modified during the compilation

process are placed. To compile all the programs in batch a

shell script named 'compile' was created as follows:

clrall
time ada -v io_package.a
time ada -v cpu_time.a
time ada -v instrument.a
time ada -v addsal.a
clr
time ada -v <program>.a
•
clr
•
time ada -v whlpa2.a
clrall
time ada -v list_package.a
•
time ada -v report_writer.a

46

l^:>»^ ;:■>:. .'i£^&^.ft&^^

jf^TO^-^ÜJv^JWBlJ^W^PIW!^^^

To save time, two directories were created - one with

just the standard Ada library routines, the other containing

the standard Ada library routines and the library routines

for IO_PACKGE, CPUJTIME, and INSTRUMENT. The 'CIT .. 1' file

(see Appendix G) is a script file which removes the file in

the Ada library directories and moves a copy of a clean Ada

library directory to the test directory. The 'clr' file

(see Appendix G) also deletes the files in the Ada library

directories, but moves a copy of the other directory after

each benchmark test program is compiled in the test

directory. The 'time' command records the time to complete

the compilation process. The total time was determined by

adding together the system and user time. The 'ada -v'

m£:ji commmand invokes the compiler and records a history of the

compilation process.

To execute the shell script 'compile' in batch, the

following command was entered:

compile >& acec.compile &

where acec.compile contains the history and times of the

compilation process.

AOS/VS Environment. The DG ADE compiler interacts

with the AOS/VS operating system through the Ada Development

Environment. The Ada Development Environment was entered by

typing 'enter'. Some preliminary steps were required before

compiling a program. The first step was to create a project

47

I

^LXt

clrall
ada LIST_PACKAGE
ada SCHEMA

ada REPORT_WRITER
clr

*1

directory by entering 'PROJCREATE'. This created the Ada

directory where the source code (.ada suffix) was stored and

the compilations were done. Next, the Ada library (.lib)

file and the library searchlist (.Isl) file was created with

the 'LIBCREATE' command. These commands were executed just

once.

In this environment, all Ada compilations had to be done

in BATCH. Therefore, a macro called 'compile.cli' was

created to execute all the compilations in one Job.

COMPILE.CLI MACRO:

ada IOJPACKAGE
ada CPUJTIME
ada INSTRUMENT
ada ADDSAl
clr
ada ADDSA2

The compiler was invoked by entering 'ada*. The 'clr' and

'clrall' macros (see Appendix G) removed the newly compiled

Ada programs except for the history file and returned the

environment back to its original condition.

The compile macro was executed with the 'BATCH* command W

as follows: m

BATCH compile C^

48 ^
■

4

VMS Environment. As Indicated before, both the ISL

and CSC compilers interact with the VMS operating system.

For these systems, the first step was to create an Ada

program library directory where the compiler stores the

files resulting from successful compilations. This was done

by entering ACS CREATE LIBRARY [<MYDIRECTORY>.ADALIB]. Once

this step was completed, it was not repeated. All newly

compiled Ada programs, packages, and procedures are held

here. Next, the current working library was defined by

entering ACS SET LIBRARY [<MYDIRECTORY>.ADALIB] because a

user may have multiple libraries in a directory. The

compiler was invoked by entering ADA/<options> FILE_NAME.

Each program to be compiled must have a '.ada* suffix.

To execute the compilation process in batch a macro

called 'compile.com' was created. In this case, the macro

consisted of the following:

$ acs set library [mydirectory.adalib]
$ ada/nooptimize/nocopy_source/nodebug/nonote.

source/lis cpu_time
$ ada/nooptimize/nocopy_source/nodebug/nonote.

source/lis IO_PACKAGE
$ ada/nooptimize/nocopy_source/nodebug/nonote.

source/lis INSTRUMENT
$ ada/nooptimize/nocopy_source/nodebug/nonote.

source/lis ADDSA1
$ acs del unit ADDSA1

$ acs/nooptimize/nocopy_source/nodebug/nonote.
source/lis WHLPA2

$ acs del unit WHLPA2
$ acs del unit IO_PACKAGE
$ acs del unit CPUJTIME

>■>:. $ acs del unit INSTRUMENT
% $ acs del unit ICS

$ acs del unit HPSORT
49

i^^^^^f . J 'iM^&mxüM^

v

^■1

■-1

^^>-

$ acs del unit XO*
$ ada/nooptimize/nocopy_source/nodebug/nonote__

source/lis LIST_PACKAGE
•

$ ada/nooptiinize/nocopy_source/nodebug/nonote_
source/lis REPORT_WRITER

$ acs del unit singly_linked_list

$ acs del unit REPORT_WRITER

For this system, the compiler defaults to certain

switches including optimization. Therefore, the above

switches were set for the compilation including no

optimization in order to have similar processing for each

compiler. The 'acs del unit' command deletes the newly

compiled program from the library.

Submitting a job in batch was accomplished by entering

the following command:

submit/after=<date:time> compile

Statistical Analysis. The analysis of variance method

and the linear regression tool on the SAS software package

(22) was used to analyze the models and eventually answer

the objective of this investigation. The data obtained in

this study was used to test two hypotheses:

I
/,

1) There is no significant difference in the predictive '^j

ability of Software Science in explaining compile time H n
across alternative Ada compilers. 'A

I

V3

^t^'

2) There is no significant difference in the

discrimination rate across alternative Ada compilers.

Consequently, the analysis was divided into two parts.

The first part investigated the model proposals and

determined their explanatory power for various Ada

compilers. Then Model 1'a predictive power was analyzed.

The second part investigated the development of a

performance index to compare the speed of various Ada

compilers.

Based on the set of data shown in Appendices D and F, the

estimation of parameters was accomplished by specifying a

regression equation with certain assumptions (18:408):

1) Error is a random variable that enters in the model

in an additive fashion. The probability distribution of the

error is normal with a mean of zero and a finite constant

variance.

2) The error associated with one value of compile time

has no effect on the errors associated with other compile

time values, that is, the errors are independent.

The regression equation for Model 2 takes the form:

T = a « N.

51

t^^^ttMK^ffi^^

rxir? r • ,"!.> nji^y. r.JTF IT' IT" \ ̂ ^^l^V.V.^VJTATW. W V V V KR l* -U M V *A * ^ u ^'3TJ 'TW wj TiT':vvivrKrrjv'j'*TVTSFr*JTKr*T* r

!•

%

Note that Model 1 and 3 are non-linear, and therefore had to

be linearized for linear regression analysis. This can be

done easily by taking the natural logarithms (Log) of both

sides of the predicting equations. As a result, the

regression equation for Model 1 now becomes:

Log T = Log(k) * a«Log(V) + b«Log(V>),

and Model 3 yields:

Log T ■ Log(k) -1- b»Log(N).

Now the estimates of the unknown parameters for all the

models can be calculated.

The data in Appendices D and F was first placed in a SAS

data file as shown in Appendix H. Once this was done, a SAS

command file containing the procedure to run regression

analysis was generated/executed to analyze the above

equations. A sample command file is contained in Appendix

I. Then the various models' explanatory power, measured by

the linear model coefficient of determination, were compared

to each other. Next, Model l*s actual vs predicted compile

times and correlation coefficients for each computer were

investigated.

The next stage in analyzing the data involved determining

if a performance index could be developed for the compile

time prediction model (Model 1) based on Halstead's time

52

t^S^^X^^^^:^;^^ .^ :.. ..v.; ..^^^^^^^

equation. For this analysis, dummy variables were used. A

w^ dummy variable is a simple way to observe the effect of each

compiler and to analyze each compiler separately while

maintaining the same exponents for volume and potential

volume. In this case, two dummy variables (C,D) were needed

to represent four compilers. As a result, Model 1's new

regression equation becomes:

Log(T) = Log(K) + a«Log(V) + b*Log(V«) + e«C + f*D,

where e and f are the estimated values of the dummy

variables that are added to the estimate of 'K'. The values

of the dummy variables (C,D) were (0,0), (0,1), (1,0), and

(1,1), where

(0,0) - Unix System

(0,1) - AOS/VS System

(1.0) - VMS-ISL System

(1.1) - VMS-CSC System.

WD

Therefore, if e and f equals 2 and 3, respectively, then 0

would be added to the constant 'K' in the Unix system, 3

would be added to the AOS/VS system, 2 would be added to the

VMS-ISL system, and finally, 5 would be added to 'K' in the

VMS-CSC system.

The composition of the SAS data file from part 1 had to

be changed for this analysis. Instead of 171 observations,

«/£.>• the new data file contained 684 observations where the

53

t* '. '-• .■ V V V V '.'*.(•>' V '«■ V '«•■''.-^r V V 'n~'s V «"^^ V .* V

pjTi^^'^TTT'^T^ ^^^^, w^-^ -7^-?^jvi^wriüTn?v^^VTn.-H ir*.T>.-- v "ii L^ \r* U~TI. &T\"W k-» if;

compile times for each computer were aggregated in one

column as shown in Appendix J. Also, two more columns were

added for the dummy variables. Then, as before, a command

file was generated/executed to determine if a performance

index could be developed to compare the processing speed of

various Ada compilers (see Appendix K).

Having presented the research methodology behind this

investigation, the results can now be presented.

£* ^T^*

54

l^^2;k^>^^^

^'5.^'^J'^T^'>TWT^

IV. Teat Results and Discusaion

As stated in Chapter III, the regression analysis tool

in the SAS data analysis package was used in this

investigation. This tool provided several statistical

measures including the strength and the estimated parameters

for a model. Appendix L gives a sample output from this

tool and explains how a model is formulated using this

output.

To demonstrate the feasibility of using an extension of

Halstead's Software Science theory, it was necessary to show

the explanatory power of using a mathematical model.

Recalling the six ways of estimating the compile time:

Table 4.1

Mathematical Models

Model Calculated Estimated

Ti = K » (V«) « (V«)b (1) K » (Vhat)« « (Lhat)» (4)

Ta = a * N (2) a « Nhat (5)

Tj = K « (N)« (3) K « (Nhat)« (6)

The adjusted coefficients of determination for each model

were calculated and are depicted in Fig. 4.1. Although all

the models were useful in explaining the compilation process

of a compiler, overall. Model Ti (Equation 1 in Table 4.1),

using known V and V*, provided the best explanatory power.

That is, this model reduced the error the most in estimating

55

^nffWWfTWTTTy^ f .n 'y ^jfytyy. ■ t' v^jrrTFVWi^ '.'t\' '-^ vyr^r^^^^^x^vv^^j^^^r^r^^^Tsn^^vv

the compilation time for all the compilers over the average

v'V compile time. Therefore, the other models were abandoned,

and Model Ti was analyzed further.

^k m

■

COMPILER MODEL COMPARISONS
Irtwww CPUs

AOS/VS CSC

ES TS
MODI OPOSALS

TI -TI

Legend: TI = KtV^MV«)1»

T2 = A » N

T3 = K « N»

"TI = K«(Vhat)««(Lhat)»

*T2 = a « Nhat

ÄT3 = K « (Nhat)*

Fig 4.1 Compiler Model Comparisons

56

fr^<>m^^^

i;^vvvr;^%-vwvvJ
,^.vvr>''\'vvv\rwvwv^'^

>••

Table 4.2 shows the percentage of error reduction over

the average compilation time if Model Ti is used to predict

compile time. It is interesting to note that the slowest

compiler, AOS/VS system, provided the best model.

Table 4.2

Error Reduction in Predicting Compile Time

Computer Mean Compile Time X Error Reduction
 (CPU sees)

UNIX 13.36
AOS/VS 27.10
VMS-ISL 12.36
VMS-CSC 7.31

55 .56
83 .81
74 09
73 .72

Based on the statistical analysis of Ti, the estimated

exponents for V and V«, 'a' and 'b' respectively are shown

in Table 4.3. In Halstead's original work, he set the

exponent of V and V* in the programmer time Equation 2.13 to

2 and -1. As indicated in Table 4.3, the estimated

exponents are approximately 0.5 and 0.1. For predicting

compilation ~ime, V* does not appear to be as significant in

the overal? •nodel as compared to Halstead's time equation.

Instead of dividing V and V*, the compiler model multiplied

these two parameters, where V* was very small. On the other

hand, taking the square root of V is interesting because of

Xvv t*le effect on modularization.

57

fTfVj^XF«jnrjnif^ x ' ^-" «.i ^.^ •."'/l*i',Vf,^*iTr\/,# Wir^v w » ^ > ' ft r\M w-w r jf ^ w ^IH-» Ti "^-.v-M v~w un» uTü-fTf m-i/«*

Table 4 .3

Parameter Es tlmates

UNIX: Adjusted R» = 0.5556, F = 107. 278 (0.0001)

Parameter Est Std Err Prob > T

K -0.6386 0.2075 0.0024
a 0.4124 0.0315 0.0001
b 0.0510 0.0292 0.0823

AOS/VS: Adjusted R« = 0.8381, F = 441, 148 (0.0001)

Parameter Est Std Err Prob > T

K -1.5067 0.1415 0.0001
a 0.5830 0.0215 0.0001
b 0.0431 0.0200 0.0319

VMS-ISL: Adjusted R> = 0.7409, F = 244. 079 (0.0001)

Parameter Est Std Err Prob > T

K -1.3314 0.1655 0.0001
a 0.4730 0.0251 0.0001
b 0.1047 0.0233 0.0001

VMS-CSC: Adjusted R« = 0.7372, F = 239, 44 (0.0001)

Parameter Est Std Err Prob > T

K -1.7833 0.1642 0.0001
a 0.4670 0.0249 0.0001
b 0.0991 0.0231 0.0001

A program can be modularized, thereby reducing the

volume. This can be expressed as:

n

i = l

V|

58

^y'l^y&j'&ttriy:.^^^^^

TW.VTf.W.WJKV^KWV^^^^ T»

If Halstead's time equation is a function of the power of V

and that power is greater than 1 then:

n

V» >> 2 (v»)2

i = l

As a result, modularization reduces programming time.

However, the compiler model, seems to indicate the opposite

since the exponent was fractional. That is, if compile time

is a function of the power of the volume, then the total sum

of all the modules' volumes is greater than the one module

containing all the programs:

n

V« << 2 (v«)". where a < 1.

i=l

Consequently, compile time increases if modularization is

used. The time reduced by a programmer when modularizing

software causes the compiler to suffer in performance.

Intuitively this makes sense, because the compiler must

expend more resources checking the library and symbol

tables.

The explanatory power of using Halstead's exponents,

compared to the compiler Model Ti, is depicted in Fig. 4.2.

^.-^5 Regression analysis was used to determined the const?ut 'K' .

59

I

fCiVj

■■■-.WW'^vrg^wT^cr^^i^lfc*1^'tWU*'^■^ W g"'VViWTfWWitnwvn^.aw. ".■"^v»■. ^ ro-""-: ^HT^-BT^^vryrw^yr^■E-^LI:^X^^V

Note that in all cases except for the AOS/VS compiler, Model

Ti did better. Therefore, having the exponents set to 2 and

-1 for V and V», respectively, was rejected.

MODEL COMPARISONS
i

M
•it

ft»«

•L«<

«.1 I
J

I rN , 1
ZZJ

•

Fig. 4.2 Halstead Model vs Compiler Model

Based on Table 4.3, the estimated model for compilation

time for each compiler is:

UNIX = T = 0.5281MV«-«*»«)

AOS/VS = T = 0.2216«(V«-,»«»»)«((V«)0'0*31)

VMS-ISL = T = 0.2641*(V<»-«'so)«((V«)0-l04T)

VMS-CSC = T s 0.1681«(V••«•70)«((V«)0•0••I)

If the independent variable was not significant - within

.05, it was not included in the model. That is why, V« is

not in the UNIX model. Appendix M shows the actual versus

the predicted times (using the above equations) for each

module.

60

E^vl'^AV ^v^i&m££:&^^

."""«_•""' •.' <' *.' •-" TV ^■^■IMWO WT '.'- ."' . ' «"" * ' • ' ■ '-!• "-" 'f ■•^/"iT—^l——■«I»IHIM mi » . ^ -•-•,«-. .»I

Table 4.4

■■rvV Correlation Between Observed and Predicted (P) Compile Times

Variable N Mean Std Dev Sum Min Max

ASC 171 13.36 14.67
DG 171 27.10 118.64
ISL 171 12.36 18.60
CSC 171 7.31 10.63
PASC 171 10.41 7.29
PDG 171 18.57 22.91
PISL 171 10.84 10.72
PCSC 171 6.48 6.23

where ASC - UNIX Compile Times
DG - AOS/VS Compile Times,
ISL - VMS-ISL Compile Times,
CSC - VMS-CSC Compile Times,

and the P prefix represents predicted compile times.

PEARSON CORK. COEFF. / PROB>/R/ / UNDER HO:RHO / N = 171

if'*

2285.17 3.23 93.73
4633.31 5.08 1535.62
2113.06 2.79 126.40
1250.22 1.69 80.88
1779.45 3.68 63.93
3175.31 3.55 201.02
1853.80 2.63 72.59
1108.60 1.62 41.82

ASC DG ISL CSC PASC PDG PISL PCSC
ASC 1 .0 .55 .86 .87 .74 .77 .79 .79
DG 1.0 .61 .59 .70 .75 .59 .59
ISL 1.0 .99 .80 .85 .88 .87
CSC 1.0 .80 .84 .88 .88
PASC 1.0 .98 .94 .94
PDG 1.0 .96 .97
PISL 1.0 .999
PCSC 1.0

Note: Significant Level - 0.0001

As demonstrated in Table 4.4, the correlation between

predicted and observed compilation times for each compiler

are all quite high. Consequently, the model fits well.

Note also that the correlation between that actual times on

the VAX computers (ASC, ISL, CSC) are quite high. This

indicates that if the compile time on one VAX computer is

high, then the compile time on another VAX computer will be

high. This makes sense, because these computers are from

the same family.

61

i^;t;\^;toit^^^

^

The predicted times compare relatively well with the

actual times as shown in Fig. 4.3 thru 4.6. In these

figures, all observations were sorted on the UNIX compile

times which explains why the times on the AOS/VS system are

not as smooth as the UNIX system. It was necessary to leave

the last two data points on Fig. 4.4 out to make the graph

presentable. Note on the residual graphs, as the compile

time increases, the difference between actual and predicted

times increases. This seems to suggest that the error does

not enter the model in an additive fashion but

exponentially. However, below 30 seconds of CPU time the

model does very well. As a final note, it is of interest to

observe that the large discrepancies between actual and

predicted compile times occurs in the same location for each

compiler. The magnitude of the error varies however, see

Table 4.5 for a few examples.

Table 4.5

Residual Error Comparison

PROGRAM

INTDA2
INTDA2
INTDA2
INTDA2
INTDB2
INTDB2
INTDB2
INTDB2

SYSTEM

UNIX
AOS/VS
VMS-ISL
VMS-CSC
UNIX
AOS/VS
VMS-ISL
VMS-CSC

RESIDUALS

-11.59
-16.93
- 5.71
- 4.32
-19.29
-33.71
- 4.85
- 2.16

%
*•>!•

Capt Maness (17) investigated this phenomenon on the UNIX

system, but was unsuccessful in determining a pattern in the

62

r/ö^frfr>fr^^^

I^Wr-i^vLT\^VATV5>^V^

I

UNIX COMPILE TIME
Aetuai v« Pr«dl«t«d

^Ü&k

I
I
3

TEST yODULCS

RESIDUALS OF COMPILE TIME
UHIX

TEST MODULES

Fig. 4.3 UNIX Compile Time: Actual va Model Prediction

63

VM^Jfrtitt^^

W^TO^'W'JW'WW'"? W. V *S'W\f-,''Jß.fJt.wywß U w& '*7J'r&W]' VJVJVJTPJVivinrrrjrjvjwm^v'jiirüirawv^irrwxiTW^ wm*?, vjuvwurrrmwi

IM

AOS/VS COMPILE TIME
Aotuai v* Pr«dl«t«d

TEST MODULES

2

RESIDUALS OF COMPILE TIME
MS/Vt

^

TEST MODULES

Fig. 4.4 AOS/VS Compile Time: Actual vs Model Prediction

64

töte^M^/M^

^T^T^T^jTfirirTT^CTW^iTJTrTirWTrr^^ nr* i.-nv-n^TrCTnr«\

VMS-ISL COMPILE TIME
Aotual v« Pr«dlot*d

I

TEST yODUUES

RESIDUALS OF COMPILE TIME
vys-isL

1
o

•oA if f
60-1

a

40 J

10-J

20-i o

10 H ■cP |

OH l % ■ igacffinMii

D
W

Oo 0

ÖSPUoJ ̂ \ II ijpnii^
D

-10- D D
o a

o

-20-
0

TEST MODULES

Fig. 4.5 VMS-ISL Compile Time: Actual vs Model Prediction

65

^L/^rtKrt^

^K^V^^^^^^"■K.;V«..'TA-nlt^■14J^^il^lL"llt•' Ü.Tii^ t TUB«^-T«"K'" ».T «T HfV '*^ * " ^'K-K^flV

VMS-CSC COMPILE TIME
Actual v* Pr*dlof«4

Sl

•0- 1
70- 1
•0- Actual

B0- ^

40-
i\\

30-

20-
ill

10-
Predicted oXAn

0 «i

TEST MODULES

RESIDUALS OF COMPILE TIME
VMS-CSC

I

-10

TEST MODULES

Fig. 4.6 VMS-CSC Compile Time: Actual vs Model Prediction

66

• * ~ %" V ■■'. "•'■ ' ' ",'. * ' ■'i/VV" '^'' %' ,^'" Vi *"~ %*V" *»*»"' "V" \' *■' ^"L^' *'■■" ""■' "•^' *■" '*"' %""

■^^^'W^wi^vi^.vvtf Tvi'u s.^1'.% '.v „'v ».^ VWTJRFVIJW&WJ ' Jf^v ''^■'P'T.' r^vr^'^.'W.vjy.'yi. y.^wvyv FS-T
i^,^f ^Ty v wV'iy?

&

tt

modules which would cause the large difference between the

compilation times. Note that the predicted times are

very close to the actual times, and then move apart as

compile time increases past 30 seconds of CPU time.

Table 4.6

Parameter Estimates for Pooled Data

Adjusted R« = 0.7066, F = 412.312 (0.0001)

Parameter Est Std Err Prob > T

K -0.9818 0.1018 0.0001
a 0.4839 0.0151 0.0001
b 0.0745 0.0140 0.0001

Dummy e -0.5601 0.0319 0.0001
Dummy f -0.1063 0.0319 0.0009

The next major area of investigation was the development

of a performance index. Table 4.6 shows the results of

this effort. The results of using dummy variables does not

really change the compiler model from Table 4.3. Note that

the exponents for V and V* are approximately the same - 0.5

and 0.1, respectively. However,'K', the translation rate,

changes slightly. That is, the discrimination rate for each

compiler is significantly different from the base, UNIX.

The equations for each compiler now become:

UNIX = T = 0.3746»(V<>-«»»»)«((V«)0-07*8)

AOS/VS = T = 0.3369«<Vo-««3»)«((V«)0-0748)

VMS-ISL = T = 0.2140»(V0-«»»»)«((V«)0-0748)

%•' VMS-CSC = T = 0.1924*(V<>-«»3»)«((v«)0-0748)

67

^^^^^^^

l^yy^ip^Wii^i^j^^^^W ^r^jr-W

Fi . 4.7 shows the performance rate of each compiler. Note

th : each line represents the plot of the linear equation

fo each compiler model. Appendix N shows a graph of the

ac lal model equations. As Fig 4.7 suggests, the compilers

wo Ld be ranked as follows (from the slowest to the

fa :est):

Table 4.7

Ada Compiler Evaluation

Rank by Rank by X Faster than
Compile Ave. Compiler Model UNIX

AOS/VS UNIX
UNIX AOS/VS 10.1
VMS-ISL VMS-ISL 42.9
VMS-CSC VMS-CSC 48.6

Observe also that the compiler on the ISL and the CSC

co niters were the same. Therefore, it can be concluded

fr \ above that the CSC computer is faster than the ISL

co niter by 10.1 percent. This is reasonable, since the CSC

VA 11/785 computer is an upgrade from the ISL VAX 11/780

co)uter.

Having presented the results of this research effort, a

nu :>er of conclusions and recommendations can now be

pr rented.

68

k^^^^^&^^::^:^^^. -i j..^^.^^:fr^-^^^^

F:TOrTt^'r^vT»v^,vr*OT,,wy«(TjTrvi^^^ \-v \,-w «,-*, v> >."»«

iff)

O
V) u

-I

f
O
O

2
M s

O
If)
<

v^

(3WLL001) NOSWVdWOO aoHvnHOddad ndo

69

kz^wm£<^:üK&&^^

0

V. Concluaiona anil Reoommendationa

In this study, an application of Halstead's Software

Science theory to compilers was evaluated. Two basic

concepts and properties of software science were reviewed,

program length and programming time. Counting rules were

established, and then software science measures examined the

data collected. In addition, mathematical models were

proposed and the appliciabilty of Halstead's theory to

compilers was demonstrated. The experiment was designed to

test two hypotheses used to validate this application.

Recalling the null hypotheses -

1) There ia no significant difference in the

predictive ability of Software Science in explaining compile

time across alternative Ada compilers,

2) There is no significant difference in the

discrimination rate across alternative Ada comp'lers.

Evidence was presented in Chapter IV which supported the

rejection of these hypotheses and, consequently, accepting

the alternative hypotheses. That is, there is a difference

in predicting compilation time for alternative compilers and

there is a difference in the translation rate for different

compilers.

70

^srafora>m:frm>m^^^

lr~M™J^7TW\^^y''!7yTO^^

Concluaiona

A number of conclusions may be drawn from the above

analysis:

First, the attempt to develop a measure which would

provide a suitable approximation of the amount of time

expended during the compilation process has been validated.

The results suggest that the software science compiler model

is a good tool for predicting compilation times. The

correlation between the actual and predicted compile times

were quite high:

^^ ••

Table 5.1

Correlation between Actual and Predicted Compilation Times

SYSTEM

UNIX
AOS/VS
VMS-ISL
VMS-CSC

CORRELATION

0.74
0.75
0.88
0.89

^

Second, using the actual value of the variables in the

model provided a better approximation of compilation time.

Referring to the model equations, all the estimated models

used the length estimator. It as been shown (28:706) that

the length estimator over-estimates small programs and

under-estimates large programs. This is especially true

with a powerful language like Ada that has a variety of

operators available. Consequently, the compiler models

using estimated values are not as accurate.

71

tttUW^tetot^+XX^^ '. * * - *__, a ^^f^^0fe^^V^^-^^^>>^

RtfW-WL^f UV WWT»^ ITU L^r^T-uVr^TTV.'?! ^"VN-;*.^ «S.^ •\-^-rr.^Tw_^ü^F-Vx.'T:^,-v.n.T»v: w^i »«..-T^r«^ w*-^ '^.i xn **—,ic.i»n«t^«'» *■-. ML^»«. ^ «TT »C- *.-I tn'-^r, WS^ »rv«r!-W?»/

Third, the signs and the magnitudes of the estimated

parameters were not within the proximity of the theorized

values. In particular, the value of the exponent for the

volume (V being approximately 0.5 instead of 2.0) was

unexpected. However, this value seems reasonable. As

explained in Chapter IV, a compiler must expend more

resources compiling several modules separately than

compiling a single program containing all the modules. In

addition, potential volume, V* was not negative and was not

as significant in this application as compared to

programming time. If the exponents were restricted to those

proposed by Halstead's time equation, the explanatory power

of the model was reduced as shown in Figure 4.2.

Fourth, the explanatory power of the model differed for

each compiler. Therefore, the predictive ability of software

science in explaining compile time across alternative Ada

compilers was different, but uniformly encouraging. There

are several possible explainations for this. First,

different architectures and operating environments will vary

the compile time for each compiler. Consequently, the

estimated parameters may be inaccurate. Ideally, a

dedicated system would have been preferred. Second, the

efficiency of a compiler affects the compilation time.

Finally, one of the most significant findings in this

study was the development of a compiler performance index.

Clearly, from the results, the values for 'K' represents the

processing rate of a compiler. The results indicate that

72

-i^Tji-'fl-V«-'»-^ «_1JB-üi-lii.'vVA.'j.*».^»."^»-"---'^■-%_-',^^._-J.j._! ■. " ■_'•.: --' v* «-*, .r-'i •-', A-', j-'. %..'. »-'. .<- , r-°i '.'. »-'. ^. a.'r-' 4.: »-'. *>■' .*-- r-. \ \ jJi" J-^ .iu*, *.•,'%... a- n- . <-'

V^^^mm^&^9F<.iM^V!i*VJX*. 9**;?**. ny H.^. ^T^.'^^y.1'* '-'.TJ »u »i?.,"-r'! f_"t* y ■ vw wf ^^TT^^.V'.'TIVI''^VL^TV
V
A" ^^Tv^v'.^^vt^rL-rry'.^?'

ranking compilers performance solely on average compile time

is incorrect. Based on the average compile time, the

ranking from the slowest to the fastest would have been ehe

AOS/VS compiler, the UNIX compiler, and then the VAX

compiler. In contrast, the software science compiler model

ranking was UNIX, AOS/VS, and then VMS. As the results have

shown, although the compiler on the AOS/VS system appears to

be the slowest, it was faster than the compiler on the UNIX

system as far as translation or processing rate. It was

also shown that 'K' can also rank computers, if the

operating environment is the same. In this case, as

expected, a VAX 11/785 was faster than a VAX 11/780.

(jj£j RecoHuaendfttigna

The following are recommendations for research on topics

related to this thesis:

- Different Counting Rules. Defining and counting

operators and operands is a major concern because these

tokens are the basic foundation of software science.

Therefore, different counting strategies should be

investigated to determine their affect on the compiler

model.

- Data Selection. By selecting a wider class of

programs, the ability of the proposed model to account for

various aspects of the compiler phenomena may be assessed.

73

j&^kfc^M^ifc^^

sä

m

K.*:

- Nonlinear Analysis. As the results have indicated,

the model becomes less effective as the compile time

increases. Therefore, the assumption that the error enters

the model in an additive fashion might be incorrect.

Consequently, this error should be investigated further. In

addition, a nonlinear model should be analyzed which assumes

that the error enters the model in a multiplicative fashion.

- The Use of Pragmas. Unlike other languages, Ada

provides pragmas which are directives to the compiler. The

effects of using this construct on the compiler model should

be investigated.

- Performance Index. This study could not determine

which compiler was better because each compiler was on a

different computer with different operating systems. The

analysis only suggested that a compiler on a certain

computer performed in a certain fashion. Consequently, if a

user had to select a computer and compiler, this approach is

appropriate. However, the only true test to determine which

compiler is more efficient on a particular computer is to

have all compilers in question on the same computer.

Therefore, if possible, this should be investigated.

- Compilers for Other Languages. It is apparent that the

software science compiler model is useful in predicting the

.• compile time and determining the efficiency of a compiler.

ä
1

 $

rrJJ'ri' ^^'■.r'^TJr'y^ i^-yy y^ >- ', ->-- .^ >-> >-» -,-» ^T- \-> \-w y-r^'.-» i"« vvv-» s-» I.^I.V^T.-^ v^VT^'VTL'-* UT-I"» VTI VTr£-w-VT«"ir« 'irw WTI kn«\ni vr-tm wn L-« IT» !.-• v-» ■.

^ff-"

v:

Since only a limited analysis on a single language was

performed, other languages should be studied.

This study obviously represents a preliminary

exploration of the applicability of software science metrics

to compilers. The results have indicated that there is

enough evidence to continue investigating this area. Future

research testing this model on other compilers and on a

broader spectrum of data might illuminate the compilation

phenomena of compilers. A compiler index has been proposed,

developed and tested. With further research, the software

science compiler model may become a valuable tool in

evaluating compiler efficiency for the DoD and the civilian

community.

75

IMttKmrtätäi^^^

i^vjww;vLv^mv^iM^

APPENDIX A

FORTRAN Caanliiai Rule Coaparisgns (2:65)

«

FORTRAN-IV element PURDUE COUNTING RULE SAP/H RULE

ACCEPT Counted Not Counted

BACKSPACE Counted Not Counted

CALL Counted paired with
routine name

Counted same
as Purdue rule

DATA Counted Not Counted

DO Counted Counted, Paired
with =,,

END Not Counted Not Counted

ENDFILE Counted Not Counted

GOTO Label Counted As GOTO Label Counted as GOTO
Label is
operand

GOTOO.VAR Counted Counted

IF()STATEMENT Counted, () separate Counted,grouped
with ()

IF()LABEL.LABEL,
LABEL

Counted, each label
is separate GOTO
labels

Counted as IF()
Labels not
counted

PRINT Counted Not Counted

READ Counted Not Counted

RETURN Counted Not Counted

REWIND Counted Not Counted

STOP Counted Not Counted

TYPE Counted Not Counted

WRITE Counted Not Counted

Var=Expression Evaluated and
counted

Evaluated and
counted

76

^^tätätt&&^^

i^wwww^ww i;.yiiiEyvwi^W^lVl"ri\TVl'7VV,lirJVTWT«t,t:^i^

m FORTRAN CflnaiJLai Rule Comparisons (Con't)

0

FORTRAN-IV element PURDUE COUNTING RULE

= Counted

Comma (,)

()

Logical Operators

END OF STATEMENTS

Function Calls

Counted, when in
counted statement

Counted, when in
counted statement

Counted

Counted

Counted

Counted as operators
and operands

'LITERAL STRINGS' Counted as operands

Subscripts Counted

Variables Counted as operands

I/O Variables Counted

SAP/H RULE

Counted, except
from DO

Counted, when
in counted
statement

Counted, from
arithmetic
express.

Counted

Counted

Counted

Counted as
operators when
used in arith
statements,
else as
operands

Not Counted

Not Counted

Counted as
operands if in
counted
statements.

Not Counted

77

•;x;>>^:k^:^::>^v^:/^^^

i

«' ^^^T

APPENDIX B

Ada Programs to Demonatrate Counting

EXAMPLE l - NRPCA1 Sovrcg LiaüüÄ:

with INSTRUMENT;
use INSTRUMENT;

procedure NRPCA1 is
package PS_CS is new PROCS(INTEGER);
use PS_CS;
package B is new PROCS(BOOLEAN);

TTRUE : B.T := B.T(TRUE);
TFALSE : B.T := B.T(FALSE);
TEST : B.T := B.Ident(TFALSE);
Recursion : B.T := B.Ident(test);
procedure Nested_Recursive_Procedure is

Local_l : T;
Local_2 : T;

procedure Nested is
begin

if BOOLEAN(Recursion) then
B.Let(Recursion, B.Ident(TFALSE));
Ne8ted_Recursive_Procedure;

else
B.Let(Test, B.Ident(TFALSE));
if BOOLEAN(Test) then
Nested_Recursive_Procedure;

end if;
end if;

end Nested;

^egin
if BOOLEAN(Recursion) then
Let(Local_l,Ident(Init));
Nested;

elsif not BOOLEAN(Test) then
Let(Local_2,Ident(Init));
Nested;

end if;
end Nested_Recursive_Procedure;

begin
START("NRPCA1"/'Nested Recursive Procedure Call (Control)");
for I in 1..100000 loop
b.let(recursion,B.ident(test));
Nested_Recursive_Procedure;

end loop;
STOP;

end NRPCA1;

78

k^W/^Vi^Mvivlv^ £m^M.J!±jC*jt*^ r. /■>-V^ <. ^. 4Sktf*X^^^£2£*£iA^mÄ^^*^^**^\^^t**SJi^r.!j'..!i:. .^'. ■■• tSiJ.-j^-J^f^tJ'^. •-■.-- \ ^^^^^AIJLMÄ^A

^5CT^^5^F?FTT5OTETrT?^CT^TITiI7,T^T^Tr^^ ■T^X^ "W 1.1 tl tl •

■hi

The COUNT for NRPCA1.:

OPERATOR COUNT OPERAND COUNT

NOT INSTRUMENT 2
BEGIN END NRPCA1 (2 types) 3
ELSE PS_CS 2
ELSIF THEN PROCS 2
FOR IN LOOP END LOOP INTEGER
IF THEN END IF 3 BOOLEAN

B 15
IS 3 TTRUE

TFALSE
GENERIC INSTANTIATION (NEW) 2 T

TRUE
PROCEDURE 3 FALSE
USE 2 TEST 6
WITH 1 RECURSION 5
»• « 2 NESTED^RECURSIVE. PROCEDURE 2
• • 1 LOCAL_l 2
• • 6 LOCAL_2 2
; s 4 NESTED 2
•
• 30 INIT 2
t 6 NESTED RECURSIVE PROCEDURE
() (aggregate) 2 CALL (CONTROL) 1
() (invocation) 13
() (type conversion) 6 BOOLEAN 4
• 14 I 1

1 1
100000 1

««the following operators
««are procedure calls
LET (2 types)

first type 3
second type 2

NESTED_RECURSIVE_PROCEDURE 2
NESTED 2
START 1
STOP 1

•? o>.

««the following operators
««are function calls
IDENT (2 types)

first type
second type

5
2

««the following operators
««are type indicators
T 6

79

tSMäSZZ^^

EXAMPLE 2 - 0PCEA1 Source JaiaMii&:

'*-> with INSTRUMENT;
use INSTRUMENT;

procedure OPCEA1 is

package NEW_PROCS is new PROCS(INTEGER);
use NEW_PROCS;

Global_l: T;
01obal_2: T;
01obal_3: T;
Global_4: T;

function Function_l (Input :
begin

if Input = Init then
return Init/Init;

end if;
return Function_l(Init);

end Function_l;

function Function_2 (Input :
begin

if Input /= Init then
return function_2(Init);

end if;
return Init/Init;

end Function_2;

T) return T is

T) return T is

begin
START("OPCEA1","Optimization Perf., Call Elim. (control)");
for I in 1..1Ü00 loop

Let(Global_l, Ident(Init));
Let(Global_2f Ident(Init));
Let(Global_3, Ident(Init));
Let(Global_4t Ident(Init) jl;

if Ident(Init) = Init then

Global_l := T(T(Function_2(Init)«Global_4)/Functional(Init);
else

Global_2 := T(T(Functional(Init)«Global_4)/Function_l(Init);
end if;
Let(Global_l, Ident(Init));
Let(Global_2, Ident(Init));
Let(Global_3, Ident(Init));
Let(Global_4, Ident(Init));
end loop;
STOP;

end 0PCEA1;

80

^«s\^i^^K^^^^^^

WWW^"

:-

lha COUNT for QPCEA1.:

'.iVT l-v i^r j-»';"«\.-» '.-w vn; y» «;"v .fr^rsi
• >

i
i
.'•
■

OPERATOR COUNT, OPERAND, COUNT j

= 2 INSTRUMENT I
/= 1 OPCEA1 (2 types) 3 ^,

» 2 NEW_PROCS 2 c
/ 4 PROCS

1 ■ BEGIN END 3 INTEGER
ELSE 1 GLOBAL.l 4 ? FOR IN LOOP END LOOP 1 GL0BAL_2 4 ^

4 f: FUNCTION RETURN 2 GLOBAL. 3
IF THEN END IF 3 GLOBAL_4 4 0

FUNCTION.! 2 ?
IS 3 FUNCTION 2 2 £

INPUT (2 types, 4 S
2 each)

M

GENERIC INSTANTIATION (NEW) 1 INIT 22 f
I 1 J

PROCEDURE 1 1 1 '-r
USE 2 1000 1 £
WITH 1 T 4 1
RETURN 4 OPTIMIZATION PERF., Si
it it

• •
•

2
1
6
2

31

CALL ELIM. (CONTROL) 1 ?
•
• •
• (

i 9 s
() (aggregate) 1 ::

() (declaration) 2 *•

() (invocation) 24 ;:
() (subscript) 4 ?
««the following operators

l\

««are procedure calls [-'
START 1 •

STOP 1 Y

LET 8 i
««the following operators MI

««are function calls •.
FUNCTION.! 4 ,
FUNCTIONS 2 ^
IDENT 9 1

««the following operators <
««are type indicators
T 8

i

5
81

1

1

&üm:MyWä&Stä'ämf<täk

1

It

'^'V!^ni'*Tl^'?"iitVl^''L'TW,TV^LlV^

1
APPENDIX C

SAMPLE DATA SHEET

PROGRAM NAME:

Operators Freq Operands Freq I/O

(Logical)
and
or
xor

(Relational)
=

/ =
<
>

ETC

(Binary)
+

(Unary)
+

(Multiply)
«

/
mod
rem

(Highest Prec)
«*

abs
not

(Short Circuit)
and then
or else

(Char Entities)
H ii

*

82

kteWMX^^

Urr&JV1 J'~J' Vjr-TT^wT'y r,w,'V)r^jrr^'jr^f'>v--?v.:-^rji^n-^ -j«.^rj,-f -jrj<r*.-s 'V^nrnrjirrr'jrj rj .-. rj Tjm*\ ru KVFTUwwiru TW« « - <.11.-. •.- >•.-. -.1 ■. -

() expression
() invocation

ETC

(Reserved Words)
abort
accept
access
all
array of
at
begin end
body is
case is when
end case

'^y

ETC

PROCEDURE CALLS

FUNCTIONS CALLS :

TASK CALLS

TYPE INDICATORS :

83

mrr^^^^^

^^

APPENDIX D

Data for the Compile i Time Study

Program nai. DJ. ILL tu HJ.

ADDSAl 0 19 14 20 36
ADDSA2 0 19 14 32 48
AKERA2 3 24 12 28 57
AOCEA1 0 27 20 48 90
AOIEA1 3 24 20 49 94
ASSIA2 0 16 11 1013 1025
ASSIB2 0 17 12 2014 2027
ATTRIB 17 42 56 167 348
BALPA1 2 15 10 13 27
BALPA2 2 19 10 15 33
BLEMA2 0 18 9 19 164
BRUAA1 2 30 17 36 86
BRUAA2 2 30 17 38 90
BRUNA1 2 25 16 35 77
BRUNA2 2 26 16 37 79
BSRCA2 10 61 52 117 238
BSRCA3 10 60 53 117 237
C31PA2 94 39 149 433 499
CAPAA1 2 34 20 33 76
CAPAA2 3 37 20 36 83
CAPAB1 2 32 21 35 76
CAPAB2 3 35 22 39 83
CASEA2 2 37 274 1072 1366
CENTA2 0 34 275 300 334
CHSSA1 5 41 42 109 172
CHSSA2 5 42 42 114 179
CPUTIM 0 10 4 9 20
CSBTA1 20 13 23 54
CSBTA2 24 13 25 60
CSCTA1 21 21 39 104
CSCTA2 25 21 50 128
CSDTA1 21 14 23 56
CSDTA2 26 16 29 67
CSETA1 21 16 29 74
CSETA2 25 16 35 88
CSSTA1 21 13 23 56
CSSTA2 25 13 26 64
DATABA 136 106 224 754 1780
DRPCA1 26 18 37 81
F1IUA1 3 19 15 29 68
F1IUA2 3 19 16 32 71
FACTAl 2 29 13 25 58
FACTA2 2 32 17 35 74
FL2RA1 3 22 14 32 75
FL2RA2 3 23 15 35 79
FLP1A1 2 18 12 21 47
FLP1A2 2 18 13 28 58

84

iäütt ■j^±jü£*z.'i'täki*ij'''t imäü

".""VTA -'."■■'• ' ■^""'T^'-^v.i.^rrrw^g^v^v.'. ^'g^ T,-»'V«'3

•B)

tf

Program na«. ILL JLX UJL tu

FPAAAl 2 23 15 22 49
FPAAA2 3 28 16 24 59
FPAAB1 2 24 18 28 63
FPAAB2 4 30 20 34 85
FPAAC1 2 23 24 40 87
FPAAC2 7 29 29 55 141
FPAAD1 2 23 30 63 138
FPAAD2 12 29 44 93 248
FPANA1 2 18 13 19 42
FPANA2 3 23 14 21 48
FPANB1 2 21 17 27 61
FPANB2 4 25 19 33 7o
FPANC1 2 21 23 39 86
FPANC2 7 26 28 54 121
FPAND1 2 24 34 63 138
FPAND2 12 26 43 91 206
FPRAA1 3 30 16 30 76
FPRAA2 3 30 16 32 80
FPRNA1 3 26 16 29 67
FPRNA2 3 26 16 31 69
GVRAA1 3 21 14 23 57
GVRAA2 3 22 14 25 61
GVRNA1 3 19 14 23 51
GVRNA2 3 20 14 25 53
HSDRA2 3 38 36 103 131
IADDA1 23 19 37 85
IADDA2 24 19 40 88
IDIVA2 24 19 40 88
IEXPA2 25 19 41 89
IMIXA2 27 19 42 92
IMIXB1 24 21 51 123
IMIXB2 30 21 60 138
IMIXC2 27 21 59 137
IMIXD1 28 22 64 142
IMIXE1 24 21 51 123
IMIXE2 31 22 65 141
INQUIR 115 119 248 871 1936
INSTR 111 121 298 1347 2434
INTDA2 0 19 159 462 478
INTDB2 0 14 505 508 1518
INTDB3 0 14 505 508 520
INTQA2 0 26 15 26 58
IOPKG 40 77 126 430 799
ISEQA2 0 28 20 43 87
LAVRA1 2 26 17 34 63
LAVRA2 2 26 17 38 72
LAVRB1 2 26 26 151 320
LAVRB2 2 26 26 191 360
LFIRA1 2 31 21 54 93
LFSRA1 5 26 19 41 84
LOAEA1 2 26 21 41 81

85

^:.^i->^.<C.^-v-l'^>lviviv^

"TTT^T'^VT^XTäTTTW. <", V, "^ '^ .'^ rj< "U* "L^ "J« !V> ''X*.Wr 1>^ SIT. W^CTH^-». V-» \.-«i-«ir

m Program na«. DJ. DJ. gj. ä±
ir*

L0ECA1 3 24 19 35 66
LOECA2 3 24 19 37 71
LOFCA1 6 28 20 38 85
LOSCA1 3 29 21 45 95
LOUIA1 3 25 18 36 73
LOUIA2 3 25 19 38 74
LRR1A1 2 26 22 39 94
LRR1A2 2 27 22 42 97
LRR3A1 2 26 22 52 113
LRR3A2 2 27 22 57 118
LVRAB1 2 25 23 115 350
LVRAB2 2 25 23 135 390
MINIA2 0 14 6 9 21
MTCQA2 0 23 14 21 49
MTESA2 0 24 18 25 48
MULTA1 0 19 13 20 36
MULTA2 0 20 13 32 48
NL00A1 2 21 17 21 53
NL07A2 2 29 21 39 82
NL65A2 2 29 40 135 340
NPPCA1 4 20 15 31 78
NPPCA2 4 20 15 27 68
NRPCA1 6 30 25 64 129

m NRPCA2 6 30 25 64 131
NULLA1 0 18 10 16 35
NULLA2 0 19 10 16 37
OPAEA1 2 28 19 68 139
OPBFA1 1 25 15 39 85
OPCEA1 8 32 20 63 146
OPISA1 2 30 22 90 174
OPNFA1 2 26 15 36 75
OPSCA1 2 35 19 78 126
PGQUA2 0 27 22 42 77
PIALA2 0 23 20 59 94
PKGEA1 26 24 88 242 509
PKGEA2 26 52 88 268 485
PRCOA2 5 59 30 90 173
PUZZA2 26 46 100 562 787
RANDA2 4 31 29 51 103
RCDSA2 0 26 616 4808 7248
RENDA1 1 31 15 32 74
RENDA2 1 32 14 32 71
RPTWRI 8 19 10 12 43
SCHEMA 6 34 233 362 ^30
SIEVA1 0 22 16 24 53
SIEVA2 3 28 22 54 85
SORTA2 0 30 29 111 159
SQ10A2 0 21 15 23 44

-•H SQPGA2 0 24 17 31 56
'v> SRCRA1 1 35 40 71 125

TAIPA1 2 31 14 31 74

86

fj^PrFrryvTyrr^ry-r'^r^^^j-prv^r^vrj,-.^ r»"V"">"^.,i"7'> w>"~>""">" ->"'>--■ >"^'.>_»^-*^■v^,."» l.-ps^S'^ -^"W"^ t^'.^y^U^'i."»^"* u-^L^ -rw ^-» V.^« : .-H'VTi' \«"» u~w UTl"-"-«! UTI 'trw.s

^N EiaÄiÄBi mi ox xu Hx HL ■VVT.N

w<

TAIPA2 2 32 16
TPGTA2 0 32 16
TPGTC2 20 32 52
TPITA1 1 30 15
TPITA2 1 30 16
TPITB1 1 34 23
TPITB2 1 37 28
TPITD1 0 45 52
TPITD2 0 45 71
TPOTA2 0 26 40
TPOTC2 0 125 109
TPSTA2 0 26 12
TPTCB2 0 29 19
TPTCC2 0 34 29
TPTCD2 0 44 44
TPUTE2 2 31 16
UAPAA1 6 40 25
VFADA1 0 27 17
VFADA2 0 28 17
WHETA2 12 43 66
WHLPA1 3 15 11
WHLPA2 3 17 11

87

37 92
36 83
125 335
41 93
44 100
77 176
92 211
207 442
266 580
141 381
417 114
29 71
62 145
107 245
220 445
48 100
49 113
26 55
32 61
362 444
15 33
17 36

XkTÜfTüPUn iM'^ra^ra^v^^^

ppj^^^Ai^^^W

IT'

APPENDIX E

Where to Bertin

1). Getting Access to Computers at AFIT:

a. Obtain and Complete AFIT Form 35
for access to ASC and CSC.

1. Disk Space requirement: 10,000 blocks

2. Enter: man [command] for information
on Ada, where command is Ada,
a.mklib, a.cleanlib, etc.

b. For access to ISL computer contact
professor incharge of system.

1. Obtain and Complete AFIT Form 35, and then
give it to the professor in charge of the
system.

Current point of contact: Dr. Hartrum

2. For general information on Ada, enter:
type sys$doc:ada.doc

3. For help on Ada commands, enter: Help.

2). Getting Access to DG computer:

a. Location - Information Systems and
Technology Center, Bldg 676
in Area B.

b. Contact - System Manager

Currently - Capt Deese (Rm. 109,
PH. 255-4472)

c. For help on Ada, enter: ADEHELP. (Note: you must
be in the ADE environment).

3). Statistical Analysis Tools

a. CSC - SAS statistical package

Note: For information on getting started with
SAS enter: type sys$doc:sas.doc.

b. or, SSC - S statistical package

Note: For information on S enter: man S

88

iMl^S^^^^^^

'Tr* '.T 7r\'vwn'\ri W^TVI.":! v v. «jv^rur

APPENDIX F

■
1
I

H

II

1
:

.-

%■
Actual Comuile T im&a.

VAX11/785 DGMV8000 VAXll/780 VAXll/785 -
UNIX AOS/VS VMS VMS 5

ADDSA1

(ASC)

3.77

(ISL) (csc) p

7.88 3.27 1.93 \
ADDSA2 4.00 9.18 3.54 2.10 |
AKERA2 4.03 7.49 3.72 2.i9 :
A0CEA1 9.90 12.15 8.14 4.9i ;■
AOIEA1 9.60 12.06 8.36 5.12
ASSIA2 12.77 45.48 19.11 10.69
ASSIB2 24.13 93.08 40.03 2i.i4 j;
ATTRIB 13.23 25.47 14.49 8.30
BALPA1 3.37 5.99 3.33 1.95
BALPA2 3.60 6.36 3.46 2.03 i
BLEMA2 5.67 8.80 5.01 2.85
BRUAA1 9.03 11.08 8.05 4.84
BRUAA2 9.27 11.29 8.05 4.92 J
BRUNA1 9.00 10.99 7.89 4.77
BRUNA2 9.17 11.00 7.94 4.74 I
BSRCA2 13.50 20.35 13.79 8.19
BSRCA3 13.73 20.44 13.78 8.16 I
C31PA2 13.80 35.25 17.42 10.89

,-■'', •
CAPAA1 9.80 11.04 7.80 4.73 C w CAPAA2 9.73 11.10 7.92 4.78
CAPAB1 10.37 11.00 7.90 4.82
CAPAB2 10.00 11.21 7.96 4.84 f
CASEA2 43.50 154.12 25.63 14.65
CENTA2 14.30 28.25 7.77 3.72
CHSSA1 7.40 14.06 5.77 3.45
CHSSA2 7.57 14.26 5.94 3.59 |
CPUTIM 3.78 5.57 5.62 3.39
CSBTA1 8.50 9.79 7.45 4.55 'l
CSBTA2 8.77 9.95 7.54 4.48 1
CSCTA1 10.00 12.06 8.53 5.14
CSCTA2 10.60 13.23 8.79 5.31 :
CSDTA1 8.77 9.91 7.49 4.52 \
CSDTA2 8.60 10.26 7.60 4.53
CSETA1 9.13 10.62 7.85 4.69
CSETA2 9.20 11.06 8.01 4.85 :
CSSTA1 8.73 10.00 7.50 4.47
CSSTA2 8.67 10.17 7.65 4.54 .
DATABA 93.73 163.54 119.03 72.89 !
DRPCA1 9.23 10.87 7.91 4.75
F1IUA1 4.50 7.44 4.27 2.49 f
F1IUA2 4.67 7.67 4.41 2.66
FACTA1 4.07 6.92 3.62 2.13
FACTA2 5.47 7.69 4.54 2.71
FL2RA1 4.77 7.76 4.28 2.57 J

->
'>>'

89

•

i
t

E>>>^y,^^>^^>J•-^^>^^y-^^^^^v^v^>v^:;^^>>^^^^^^

rw"^??!r^*777v,,7rT'"T'rr«^^

m

m

VAX11/785 DGMV8000 VAX11/780 VAX11/785
UNIX AOS/VS VMS VMS
(ASCI

4.77

(ISU (CSC)

FL2RA2 8.00 4.41 2.59
FLP1A1 3.67 6.58 3.64 1.69
FLP1A2 4.10 6.83 3.88 2.28
FPAAA1 8.60 9.29 7.32 4.48
FPAAA2 8.87 9.47 7.58 4.56
FPAAB1 9.23 10.07 7.77 4.66
FPAAB2 9.53 10.55 8.15 4.91
FPAAC1 10.33 11.58 8.65 5.23
FPAAC2 11.17 12.54 9.46 5.69
FPAAD1 12.37 14.26 10.24 6.17
FPAAD2 14.33 16.17 11.60 7.10
FPANA1 8.53 9.22 7.30 4.44
FPANA2 8.47 9.27 7.34 4.45
FPANB1 9.30 10.08 7.68 4.68
FPANB2 9.37 10.46 7.96 4.76
FPANC1 10.37 11.47 8.58 5.16
FPANC2 10.83 12.25 9.13 5.47
FPAND1 12.47 14.24 10.17 6.19
FPAND2 13.37 15.45 10.94 6.71
FPRAA1 9.53 10.45 7.86 4.81
FPRAA2 9.50 10.45 7.94 4.77
FPRNA1 9.30 10.29 7.69 4.67
FPRNA2 9.30 10.35 7.75 4.71
GVRAA1 8.93 9.87 7.53 4.47
GVRAA2 8.93 9.94 7.50 4.55
0VRNA1 8.87 9.79 7.40 4.44
GVRNA2 8.57 9.87 7.51 4.53
HSDRA2 8.07 13.93 6.96 4.03
IADDA1 9.47 11.23 8,07 4.82
IADDA2 9.73 11.72 8.02 4.86
IDIVA2 9.40 11.62 8.03 4.88
IEXPA2 9.77 11.50 8.20 4.83
IMIXA2 9.77 12.44 8.08 4.96
IMIXB1 10.93 13.00 8.88 5.28
IMIXB2 11.17 14.98 9.10 5.46
IMIXC2 11.13 14.63 9.06 5.47
IMIXD1 11.10 15.53 9.20 5.60
IMIXE1 10.83 13.01 8.95 5.37
IMIXE2 11.23 15.25 9.16 5.68
INQUIR 84.33 158.19 126.40 80.88
INSTR 59.97 136.58 75.48 40.21
INTDA2 8.47 22.99 13.03 6.95
INTDB2 10.47 35.98 24.60 15.45
INTDB3 9.87 22.91 20.19 14.03
INTQA2 10.13 9.23 6.25 3.86
IOPKG 35.77 81.91 45.93 28.03
ISEQA2 15.40 15.84 10.94 6.81
LAVRA1 11.43 10.86 9.15 5.58

90

. ■*". <d *■.-"■. ** ' 4.' O • ' O'*' O <^.lLH., KAlLiyL' IV 'S %J «»W, ".' •.* ".■" •., "'■" ^.' ".' •.■ «.■" *.

{!^^<^^^T^'i^V^^l^y'^lw!!.wV.v'-iv''' ra,.?'j"',:"'',:,r-':^,w;"9"i •trtwjwjrfw: ^ v^v-j-j^-wc-w^-rj ■rrTV"'";! »^'STSTTT/ T-ZTU T^wsm.ric^w^f! c^scTs^.T^iCT

Vv

LAVRA2
LAVRB1
LAVRB2
LFIRA1
LFSRA1
L0AEA1
L0ECA1
L0ECA2
L0FCA1
L0SCA1
L0UIA1
L0UIA2
LRR1A1
LRR1A2
LRR3A1
LRR3A2
LVRAB1
LVRAB2
MINIA2
MTCQA2
MTESA2
MULTA1
MULTA2
NL00A1
NL07A2
NL65A2
NPPCA1
NPPCA2
NRPCA1
NRPCA2
NULLA1
NULLA2
OPAEA1
OPBFA1
OPCEA1
OPISA1
OPNFA1
OPSCA1
PGQUA2
PIALA2
PKGEA1
PKGEA2
PRCOA2
PUZZA2
RANDA2
RCDSA2
RENDA1
RENDA2

VAX11/785 DGMV8000 VAX11/780 VAX11/785
UNIX AOS/VS VMS VMS
(ASC) (ISLi (CSC)

11.53 11.11 9.22 5.64
26.03 22.73 23.48 14.37
30.40 24.24 24.67 15.15
10.97 14.23 9.18 5.59
9.27 11.15 8.21 4.92
9.20 11.32 8.00 4.86
9.40 10.87 7.96 4.81
9.30 11.21 8.10 4.92
9.43 11.13 8.27 5.04
10.27 12.00 9.62 5.84
9.13 11.08 8.20 4.99
9.17 11.08 8.20 4.97
8.97 11.39 8.04 4.78
9.30 11.46 7.97 4.80
9.30 12.82 8.36 4.99
9.37 13.14 8.48 4.98
16.57 21.01 13.26 8.08
17.60 22.06 13.71 8.51
3.23 5.08 2.79 1.70
9.63 8.99 6.06 3.70
11.03 10.90 8.05 5.08
3.97 6.94 3.25 2.00
4.07 8.20 3.52 2.18
9.63 8.60 7.02 4.30
9.63 10.94 8.16 4.93
32.13 46.78 15.15 9.26
9.63 10.41 7.90 4.82
9.33 9.95 7.91 4.67
12.87 12.73 9.35 5.67
12.87 12.85 9.34 5.71
3.87 6.82 4.47 2.63
3.93 6.76 4.41 2.60
11.07 15.21 8.98 5.50
9.60 11.40 8.14 4.95
11.63 14.14 9.33 5.65
11.83 17.01 9.48 5.68
8.90 11.21 7.77 4.78
11.40 14.35 10.20 6.46
10.03 10.00 6.44 3.99
4.40 9.88 4.26 2.50
41.70 63.65 82.27 37.55
43.77 67.57 84.97 40.04
8.73 12.88 6.73 4.17
23.10 62.19 20.88 12.52
4.17 8.45 4.01 2.41
89.87 1535.62 122.16 66.82
5.47 7.67 4.29 2.56
5.30 7.69 4.32 2.62

91

.^<C\.^^-.'rv<'^^.r^^fo'^<<f.^f!»j'^v.rdjfiL<^f^v<^iJv^v^f^t\ ifn .-r.'i". <f4".f jy^v.vlv.'-f.'.'. ■r..'>.v-V-vJv.,v\v j-y^j^

IWT^^A'^TW^JWif^^^Trj^in^ \-'^ VTr*Trrj*TiTWrz^rr*"-'**' rv-rj'Tj M". V.

RPTWRI
SCHEMA
SIEVA1
SIEVA2
S0RTA2
SQ10A2
SQPGA2
SRCRA1
TAIPA1
TAIPA2
TPGTA2
TPGTC2
TPITA1
TPITA2
TPITB1
TPITB2
TPITD1
TPITD2
TP0TA2
TP0TC2
TPSTA2
TPTCB2
TPTCC2
TPTCD2
TPUTE2
UAPAA1
VFADA1
VFADA2
WHETA2
WHLPA1
WHLPA2

VAX11/785 DGMV8000 VAX11/780 VAX11/785
UNIX AOS/VS VMS VMS
(ASCi USh) rcso

3.70 6.94 2.90 1.77
74.17 62.97 42.57 26.82
3.83 6.49 3.54 2.21
4.63 8.99 4.20 2.54
10.23 15.06 8.75 5.54
13.50 13.50 9.81 6.26
13.83 14.15 10.08 6.43
8.97 14.03 8.97 5.70
5.43 7.38 4.51 2.83
5.63 7.64 4.63 2.97
5.63 7.19 4.63 2.98
9.47 13.97 8.33 5.27
6.27 7.82 5.05 3.17
6.57 8.00 5.17 3.38
9.93 10.75 7.44 4.78
11.13 11.56 8.09 5.17
23.73 20.98 16.19 10.08
28.80 24.94 18.99 11.92
12.30 15.99 9.37 5.90
29.90 42.70 21.76 13.54
5.50 6.94 4.48 2.80
8.80 9.39 6.74 4.26
13.83 13.02 9.87 6.36
23.10 20.74 16.10 10.24
6.57 8.40 5.44 3.36
10.37 12.46 8.53 5.44
59.27 10.07 4.32 2.86
59.43 10.80 4.53 2.96
14.57 42.68 11.73 7.48
3.73 6.25 3.42 2.15
3.87 6.58 3.56 2.18

•- -.

92

^^^-^m^::<^^^

^■O '"• ^vy'VI "■'TITv~r*V T'iT'/'v.: ,-; .- ■ .-_' "nf »T»VJW-VT'^r'l'TVJV'nr "V r.» r.» -y>,-,« -^i -'j'l-T'rj^ii'y rj'^jcjrji "'">-"> 7 lf"»""w»T¥ "krT-s^'V " ir» kTV^S""" !■"» Vi"1

APPENDIX G

Macros Uaed During the TEST

1. milX SYSTEM:

Macro; clr

Code; #
cd <home directory>/comp_acec
cd .imports
rm «
cd . .
cd .objects
rm *
cd <home directory>/comp_acec/.nets
rm *
cd <home directory>/comp_acec/.lines
rm t
cd <home directory>/comp_acec
rm OVAS_table
rm ada.lib
rm gnrx.lib
cd <home directory>/begin.lib
cp *.lib <home directory>/comp_acec
cp QVAS* <home directory>/comp_acec
cd .objects
cp * <home directory>/comp_acec/.objects
cd ..
cd .nets
cp * <home directory>/comp_acec/.nets
cd ..
cd .lines
cp * <home directory>/comp_acec/.lines
cd ..
cd .imports
cp * <home directory>/comp_acec/.imports
cd <home directory>/comp„acec

Note: The BEGIN directory contained all libraries
necessary for the benchmark test modules to compile, i.e.
the standard Ada libraries and IO_PACKAGE, CPUJTIME and
INSTRUMENT libraries.

Macro; clrall

Code: Same as above except START.LIB is
substituted for BEGIN.LIB

Note: The START directory contained only the standard
,/■v'•., Ada libraries.

93

r^-rt^^-^^

l^'l^Vl^WWTM^Ul'-'T^^

#>

2. AOS/VS SYSTEM!

Macro: clr.cli

Code: dir :accounts:afit:acec
del +.ob +.Btr +.tree +.sr +.lat ac+
dir begin
move/d Ä+
dir :accounts:afit:acec

Note: The BEGIN directory contained all libraries
necessary for the benchmark test modules to compile, i.e.
the standard Ada libraries and IO_PACKAGE, CPUJTIME and
INSTRUMENT libraries.

Macro: clrall.cli

Code: dir :accounts:afit:acec
del +.ob +.str +.tree +.sr +.lst ac+
dir start
move/d "+
dir :accounts:afit:acec

Note: The START directory contained only the standard
Ada libraries.

94

i&<KtäKtä^<^:tt

iro^ry^.^j'^'j.fj'^

APPENDIX H

3AS Data File for Analysis 1

Nam? of File.: table.sas

cards;
ADDSAl 0 19 14 20 36 3.77 7.88 3.27 1.93
ADDSA2 0 19 14 32 48 4.00 9.18 3.54 2.10
AKERA2 3 24 12 28 57 4.03 7.49 3.72 2.19
A0CEA1 0 27 20 48 90 9.90 12.15 8.14 4.91
AOIEA1 3 24 20 49 94 9.60 12.06 8.36 5.12
ASSIA2 0 16 11 1013 1025 12.77 45.48 19.11 10.69
ASSIB2 0 17 12 2014 2027 24.13 93.08 40.03 21.14
ATTRIB 17 42 56 167 348 13.24 25.47 14.49 8.30
BALPA1 2 15 10 13 27 3.37 5.99 3.33 1.95
BALPA2 2 19 10 15 33 5.67 8.80 5.01 2.85
BLEMA2 0 18 9 19 164 9.03 11.08 8.05 4.84
BRUAA1 2 30 17 36 86 9.27 11.27 8.05 4.92
BRUAA2 2 30 17 38 90 9.00 10.99 7.89 4.77
BRUNA1 2 25 16 35 77 9.17 11.00 7.94 4.74
BRUNA2 2 26 16 37 79 13.50 20.35 13.79 8.19
BSRCA2 10 61 52 117 238 13.73 20.44 13.78 10.89
BSRCA3 10 60 53 117 237 9.80 11.04 7.80 4.73

where

etc

Column 1 - Program
Column 2 - nt«
Column 3 - ni
Column 4 - ni
Column 5 - Ni
Column 6 - Ni
Column 7 - Unix Compile Times
Column 8 - AOS/VS Compile Times
Column 9 - VMS-ISL Compile Times
Column 10 • - VMS-CSC Compile Times

e data fil< a must have a '.sas' su NOTE: The data file must have a '.sas' suffix and
at least one blank space between columr ;.

95

EraW^N^^NW^^^

w^riwwmvi'wwvfrwfvwwt^mw*^^

M
APPENDIX I

SA3 Command Files for Analvaia 1

Name of File; Testl.sas

Objective: Determine the ad asted coefficient of
determination for each model and estimate the
unknown parameters for Model 1.

m

Code; DATA;
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC;
Ntotal = CN1 + CN2;
Nhat = Nl * L0G2(N1) + N2 « LOG2(N2);
LOGNtot = LOG(Ntotal);
LOGNhat = LOG(Nhat);
VOL = Ntotal « LOG2(2 + N2);
Vstar = (2+10) « LOG2(2 + 10);
LOGVOL = LOG(VOL);
LOGVstar = LOG(Vstar);
VOLest = Nhat » L0G2(N1 + N2);
Lhat = 2/Nl»N2/CN2;
LOGVOLes = L0G(VOLest);
LOGLhat s LOG(Lhat);
logtimel a LOG(UNIX);
logtime2 = LOG(AOSVS);
logtime3 = LOG(ISL);
logtime4 = LOG(CSC);
Effort = V0L*«2 / (Vstar);
%INCLUDE table;
PROC REG;
Model UNIX = Ntotal;
Model UNIX = Nhat;
Model AOSVS = Ntotal;

Model CSC = Nhat;
Model logtimel s LOGNtot;
Model logtimel = LOGNhat;
Model logtime2 = LOGNtot;

Model logtime4
Model logtimel
Model logtimel
Model logtime2

LOGNhat;
LOGVOL LOGVstar;
LOGVOLes LOGLhat;
LOGVOL LOGVstar;

>A

Model logtime4 = LOGVOLES LOGLhat;
Model UNIX = Effort;
Model AOSVS = Effort;
Model ISL = Effort;
Model CSC = Effort;

96

li>i£(&&^^ Jajf&jfäjCxJ?

^Uiym1. ^v T-; ,'y,'y: ^jy^,w rT^^^T^i^r^w^r^^^-j^Ariy^ri^i v\: tr^w^ wj wisy^yfraTriy ^ vi^My^vw^-^^^^i-^rw^^i^s^rwv-

..s;.':,.
Name of File; Test2.aas

*** Objective: Obtain predicted times and correlate predicted
and actual compile times for Model 1.

Code; DATA;
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC;
Ntotal = CN1 + CN2;
VOL = Ntotal « L0G2(N1 + N2);
Vstar = (2 + 10) « LOG2(2 + 10);
PUNIX = .5281 « (VOL««.4124);
PAOSVS = .2216 « (VOL««.5830 « Vstar««.0431);
PISL = .2641 « (VOL««.4730 « Vstar««.1047);
PCSC = .1681 « (VOL««.4670 « Vstar*«.0991);
RUNIX = Unix - PUNIX;
RAOSVS = AOSVS - PAOSVS;
RISL = ISL - PISL;
RCSC = CSC - PCSC;
»INCLUDE table;
PROC PRINT;
PROC C0RR;
VAR UNIX PUNIX AOSVS PAOSVS ISL PISL CSC PCSC;

NOTE: 'P' prefix - Predicted Compile Time
'R' prefix - Residual

Execution: runsas [filename] <New Line>
<New line>

Note: The '.sas' suffix not required.

yy\

97

t^j^i^a^^^

T-'.T V*!."^ r* 'r»:ir,'Vln^>^VT'T':TT^.ir^Ji^jr^rFj-i»^i>y-^ -jr 'ArA'^.'VU'^/i^^riTiVirffTfUirj»"» jn; TJ >»>■ ■" WRF »n P^A v »^ fVJ.^r^v\-fc-uTr'j^ in u-» w-<tJT «

s <% >."

APPENDIX J

SAS Data File for Analysis 2

Name of FüQ: tablet.sas

cards;
ADDSAl 0 19 14 20 36 3.77 0 0
ADDSA2 0 19 14 32 48 4.00 0 0
AKERA2 3 24 12 28 57 4.03 0 0
A0CEA1 0 27 20 48 90 9.90 0 0
A0IEA1 3 24 20 49

•
•

etc

94 9.60 0 0

ADDSA1 0 19 14 20 36 7.88 0
ADDSA2 0 19 14 32 48 9.18 0
AKERA2 3 24 12 28 57 7.49 0
A0CEA1 0 27 20 48 90 12.15 0
AOIEA1 3 24 20 49

•
•

etc

94 12.06 0

ADDSAl 0 19 14 20 36 3.27 0
ADDSA2 0 19 14 32 48 3.54 0
AKERA2 3 24 12 28 57 3.72 0
A0CEA1 0 27 20 48 90 8.14 0
A0IEA1 3 24 20 49

•
•

etc

94 8.36 0

ADDSAl 0 19 14 20 36 1.93
ADDSA2 0 19 14 32 48 2.10
AKERA2 3 24 12 28 57 2.19
AOCEA1 0 27 20 48 90 4.91
AOIEA1 3 24 20 49 94 5.12

• S J

where

etc

Column 1 - Program
Column 2 - na«
Column 3 - ni
Column 4 - na
Column 5 - Na
Column 6 - Ni
Column 7 - Compi. Le Times for all Computers
Column 8 - Dummy Variable •e'
Column 9 — Dummy Varaible »f

NOTE: The data file must have a '.sas' suffix and
at least one blank space between columns.

98

fr^v^:v:c^-:v:v^^

^^fy^y^Wfi^Pffyfr^; i>'j II.[U u W-WIF^ VjTivyj'Vf^! yj^pyry'^'^wy^Tyny^-wywy.ry ■jFj'ry^i-.j ■ B.^ wyi*

APPENDIX K

SA8 Command Files for Analysis 2

Name of File; Test3.sas

Objective: Determine the translation rate for each
compiler.

fiadfi: DATA;
INPUT ID $ 10 Nl N2 CN2 CN1 TIMES A B;
Ntotal = CN1 + CN2;
VOL = Ntotal » L0G2(2 + N2) ;
Vstar = (2+10) » LOG2(2 + 10);
LOQVOL = LOG(VOL);
LOGVstar = L0G(V8tar); I
Logtime = LOG(TIMES);
XINCLUDE table1; >
PROC REG; K
Model Logtime = LOGVOL LOGVatar;

Name of File: Tests.sas

Objective: Obtain compile times from the linear equation
for each compiler.

QsdS.' DATA;
INPUT ID $ 10 Nl N2 CN2 CN1 UNIX AOSVS ISL CSC;
Ntotal = CN1 + CN2;
VOL = Ntotal « L0G2(N1 + N2) ;
Vstar = (2+10) * LOG2(2 + 10);
LOGUNIX = -.9918 + (.4839»LOGVOL)+(.0745«LOGVstar);
LOGAOSVS = -1.0881 + (.4839»LOGVOL)+(.0745»LOGVstar);
LOGISL = -1.5419 + (.4839«LOGVOL)+(.0745«LOGVstar);
LOGCSC = -1.6482 + (.4839«LOGVOL)+(.0745«LOGVstar);
XINCLUDE table;
PROC SORT;
by UNIX;

PROC Print;
VAR LOGUNIX LOGAOSVS LOGISL LOGCSC;

Execution: runsas [filename] <New Line>
<New line>

Note: The '.sas' suffix not required.

99

I

WW\n*VW^\^*^iv\^v'S'^^ is^n^iV^ TE«

&

APPENDIX L

Sample SAP Output

SAS Output:

SAS

DEP VARIABLE : LOGTIME2

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 2 77.92702 38.96376 444.600 0.0001
ERROR 168 14.72316 O.08763785
C TOTAL 170 92.65068

ROOT MSE 0.2960369 R-SQUARE 0.8411
DEP MEAN 2.606862 ADJ R-SQ 0.8392

PARAMETER ESTIMATES

PARAMETER STANDARD
VARIABLE DF ESTIMATE ERROR

INTERCEP 1 -1.51681 0.1413134
LOGVOL 1 0.5838089 0.02141666
LOGVSTAR 1 0.04561004 0.01981437

T FOR HO:
PARAMTER=0 PROB>\T\

•10.734
27.260
2.302

0.0001
0.0001
0.0226

The ANALYSIS OF VARIANCE part of the printout displays

results of tests to determine if the model is significant.

In this example, the model being tested is:

TIME = K « V« « (V«)«»,

and the null hypothesis is:

V and V« are NOT significant in computing TIME,

100

xsmuxx^^

l^~yT»™^TV^>T>^:-''>T^:^y'>^:^^ -><-j<'wrj«;n?TV 'v.-^ -^r^^jvr^jrjrj-in?-»

Ä

There are four values (21:690-691) in this portion of the

printout that are of particular interest to this analysis.

1) The number under the entry F VALUE is the F Value for

testing the hypothesis that all parameters are zero except

for the intercept. If this number is near 1, the null

hypothesis can be accepted. If this number is large, the

null hypothesis can be rejected and it can be concluded that

the model as a whole is significant.

2) The number under the entry PROB>F is the probability

of getting a greater F statistic than that observed if the

hypothesis is true. This is the significance probability.

In this example, there is a 99.99 probability that the null

hypothesis is FALSE, and therefore the null hypothesis can

be rejected and it can be concluded that V and V* are

significant in computing TIME.

3) The number to the right of the R-SQUARE entry is a

measure between 0 and 1 that indicates the portion of the

(corrected) total variation that is attributed to the fit

rather than left to residual error. This value is also

called the coefficient of determination. It is the square

of the correlation between the dependent variable and the

predicted values. This value is not used in this research

because it cannot be used to compare models that have

different degrees of freedom.

4. The number to the right of the ADJ R-SQ entry is an

adjusted version of R-SQUARE that has been adjusted for

degrees of freedom. Because this value is adjusted for

101

Rtt^fr>^::?^^

«BVWCVlV^^W.^T^A^lVTO,XT■7TCT^w^T^^ np> r»n* runn^A« njuyij

m
degrees of freedom, it can be used to compare different

> models. In this example, the ÄDJ R-SQ tells us that we can

account for over 83.92 percent of the compile time just by

knowing V and V*. We can also conclude that this model

reduces the error in estimating compilation time by 83.92

percent over the average compile time.

The PARAMETER ESTIMATES part of the printout displays the

estimated values of unknown variables and also displays the

results of tests to determine if those variables are

significant in the overall model. In this example, the

estimated linear equation is:

LOG(TIME) = -1.51681 + 0.584LOG(V) + 0.046LOG(V«);

Note: LOG = natural logarithm,

which is equivalent to:

Time = («-i.•!••») « v(o.»9*) % (v«)o.o««(

There are also four values in this part of the printout

that are of interest:

1) The first value under the PARAMETER ESTIMATES entry is

the estimated value for the first variable, INTERCEP.

2) The first value under the PROB>\T\ is also associated

with the first variable, INTERCEP. This value is the

probability that a T statistic would obtain a greater

absolute value than that observed given that the true

parameter is zero. This is the two-tailed significance

102 S;
I
V y o

flwr^"t^T-m^wr-i «^w.'xst.n;« T v.' -%^ 'M.'ni.;" r^TXT^'V-l T'T^'TX"^ ^."x;^lfeTT*:T;ATF'TTl.i «"mm ■i^v*' 4^ *w«..^"n_T«^.it...-^"-"» "»xiitn-^^mji uTii ^ M^M^ »^mw-Äf

probability. If this number is small the value of the first

parameter is not likely to be 0; therefore, the parameter

contributes significantly to the overall model.

3) The second and third values under the PARAMETER

ESTIMATES entry are the estimated values for the exponents

for V and V«.

4) The second and third values under the PROB>\T\ entry

are the T statistics test values for V and V*. As in 2

above, if this number is small, the value of the associated

parameter is not likely to be 0; therefore, the parameter

contributes significantly to the overall model.

m

103

•'> »N »''■"• ,*• ,V L>
1 OJW i.-UJUjfVjUJ: x£l£^jL£jjl!^Mj!!A&LkMJ!uL£. .?-^,JW.uafc-lAAAAAfti_3fc.-.Ä».l_9WL.^.^S» L'« L.'» L.V.tJ^._V^^'L

-' *.' "Vl V V V

Ti\^"^*:v^'-T*w,^5V-rr.v-^^^^

APPENDIX M

Actual (A) vs Predicted (P) Times

UNIX AOS/VS VMS- •ISL VMS- •CSC
Program A P A P A P A P

ADDSAl 3.77 5.41 7.88 6.13 3.27 4.09 1.93 2.51
ADDSA2 4.00 6.27 9.18 7.54 3.54 4.85 2.10 2.97
AKERA2 4.03 6.49 7.49 8.56 3.72 6.07 2.19 3.68
AOCEA1 9.90 8.17 12.15 10.97 8.14 6.57 4.91 4.00
AOIEA1 9.60 8.23 12.06 11.96 8.36 7.97 5.12 4.81
ASSIA2 12.77 23.26 45.48 48.15 19.11 21.82 10.69 13.09
ASSIB2 24.13 31.13 93.08 72.67 40.03 30.47 21.14 18.21
ATTRIB 13.23 15.11 25.47 30.70 14.49 19.60 8.30 11.59
BALPA1 3.37 4.55 5.99 5.10 3.33 3.89 1.95 2.37
BALPA2 3.60 5.00 6.36 5.82 3.46 4.33 2.03 2.64
BLEMA2 5.67 8.61 8.80 11.81 5.01 6.98 2.85 4.25
BRUAA1 9.03 7.77 11.08 10.84 8.05 7.17 4.84 4.34
BRUAA2 9.27 7.92 11.29 11.15 8.05 7.33 4.92 4.43
BRUNA1 9.00 7.39 10.99 10.10 7.89 6.77 4.77 4.10
BRUNA2 9.17 7.51 11.00 10.34 7.94 6.90 4.74 4.18
BSRCA2 13.50 13.13 20.35 24.48 13.79 15.61 8.19 9.29
BSRCA3 13.73 13.12 20.44 24.44 13.78 15.59 8.16 9.27
C31PA2 13.80 20.39 35.25 51.22 17.42 34.27 10.89 19.95

CAPAA1 9.80 7.52 11.04 10.36 7.80 6.91 4.73 4.18
CAPAA2 9.73 7.84 11.10 11.17 7.92 7.54 4.78 4.55
CAPAB1 10.37 7.56 11.00 10.44 7.90 6.95 4.82 4.21
CAPAB2 10.00 7.92 11.21 11.33 7.96 7.63 4.84 4.60
CASEA2 43.50 31.49 154.12 78.41 25.63 35.70 14.65 21.16
CENTA2 14.30 18.06 28.25 33.66 7.77 16.32 3.72 9.83
CHSSA1 7.40 11.59 14.06 19.86 5.77 12.47 3.45 7.46
CHSSA2 7.57 11.81 14.26 20.40 5.94 12.74 3.59 7.62
CPUTIM 3.78 3.68 5.57 3.55 5.62 2.63 3.39 1.62
CSBTA1 8.50 6.17 9.79 7.66 7.45 5.22 4.55 3.18
CSBTA2 8.77 6.52 9.95 8.27 7.54 5.55 4.48 3.38
CSCTA1 10.00 8.19 12.06 11.43 8.53 7.22 5.14 4.37
CSCTA2 10.60 9.05 13.23 13.17 8.79 8.09 5.31 4.90
CSDTA1 8.77 6.28 9.91 7.85 7.49 5.32 4.52 3.24
CSDTA2 8.60 6.95 10.26 9.06 7.60 5.98 4.53 3.63
CSETA1 9.13 7.05 10.62 9.25 7.85 6.08 4.69 6.69
CSETA2 9.20 7.68 11.06 10.43 8.01 6.70 4.85 4.07
CSSTA1 8.73 6.26 10.00 7.82 7.50 5.30 4.47 3.23
CSSTA2 8.67 6.69 10.17 8.59 7.65 5.72 4.54 3.48
DATABA 93.73 32.13 163.54 99.26 119.02 60.44 72.89 34.87
DRPCA1 9.23 7.61 10.87 10.82 7.91 7.50 4.75 4.52
F1IUA1 4.50 6.81 7.44 9.15 4.27 6.41 2.49 3.88
F1IUA2 4.67 7.01 7.67 9.53 4.41 6.63 2.66 4,01
FACTA1 4.07 6.55 6.92 8.51 3.62 5.89 2.13 3.57
FACTA2 5.47 7.45 7.69 10.21 4.54 6.83 2.71 4.14

C"1 FL2RA1 4.77 7.14 7.66 9.78 4.28 6.77 2.57 4.09
FL2RA2 4.77 7.38 8.00 10.24 4.41 7.03 2.59 4.25
FLP1A1 3.67 5.80 6.58 7.17 3.64 5.13 1.69 3.12

104

fr^ä^fofr^v^s^

UNIX AOS/VS VMS-ISL VMS-CSC

1

>

Program A P A P A P A P

FLP1A2 4.10 6.41 6.83 8.27 3.88 5.76 2.28 3.49 M
FPAAA1 8.60 6.07 9.29 7.65 7.32 5.40 4.48 3.28 >'
FPAAA2 8.87 6.58 9.47 8.71 7.58 6.16 4.56 3.73
FPAAB1 9.23 6.80 10.07 8.98 7.77 6.15 4.66 3.73 3
FPAAB2 9.53 7.74 10.55 11.09 8.15 7.65 4.91 4.61
FPAAC1 10.33 7.90 11.58 11.10 8.65 7.31 5.23 4.42 6
FPAAC2 11.17 9.65 12.54 15.57 9.46 10.51 5.69 6.29 i
FPAAD1 12.37 9.66 14.26 14.76 10.24 9,21 6.17 5.55 _»

FPAAD2 14.33 12.40 16.17 22.81 11.60 14.96 7.10 8.90
* ■

FPANA1 8.53 5.57 9.22 6.77 7.30 4.89 4.44 2.97 ',

FPANA2 8.47 5.98 9.27 7.61 7.34 5.52 4.45 3.35
h

K
FPANB1 9.30 6.63 10.08 8.67 7.68 5.98 4.68 3.63
FPANB2 9.37 7.33 10.46 10.28 7.96 7.19 4.76 4.34 i
FPANC1 10.37 7.79 11.47 10.88 8.58 7.19 5.16 4.35 m

FPANC2 10.83 9.15 12.25 14.42 9.13 9.88 5.47 5.92 *

FPAND1 12.47 9.75 14.24 14.96 10.17 9.31 6.19 5.61 f.
FPAND2 13.37 11.66 15.45 20.88 10.94 13.93 6.71 8.29 r.
FPRAA1 9.53 7.31 10.45 10.11 7.86 6.96 4.81 4.20 <•-
FPRAA2 9.50 7.48 10.45 10.44 7.94 7.14 4.77 4.31 1
FPRNA1 9.30 6.95 10.29 9.41 7.69 6.56 4.67 3.97
FPRNA2 9.30 7.07 10.35 9.64 7.75 6.69 4.67 4.04 >

GVRAA1 8.93 6.32 9.87 8.22 7.53 5.88 4.47 3.56
GVRAA2 8.93 6.53 9.94 8.62 7.50 6.11 4.55 3.70

m GVRNA1 8.87 6,07 9.79 7.78 7.40 5.62 4.44 3.41 ■
GVRNA2 8.57 6.23 9.87 8.06 7.51 5.79 4.53 3.50 I
HSDRA2 8.07 10.64 13.95 17.18 6.96 10.69 4.03 6.43 ■^

IADDA1 9.47 7.67 11.23 10.42 8.07 6.69 4.82 4.06 >
IADDA2 9.73 7.85 11.72 10.75 8.02 6.87 4.86 4.17 -,

IDIVA2 9.40 7.85 11.62 10.75 8.03 6.87 4.88 4.17 N

IEXPA2 9.77 7.92 11.50 10.89 8.20 6.94 4.83 4.21
IMIXA2 9.77 7.05 12.44 11.16 8.08 7.08 4.96 4.29 P
IMIXB1 10.93 8.95 13.00 12.95 8.88 7.99 5.28 4.84
IMIXB2 11.17 9.57 14.98 14.23 9.10 8.62 5.46 5.21 s
IMIXC2 11.13 9.46 14.63 14.02 9.06 8.52 5.47 5.15 K
IMIXD1 11.10 9.70 15.53 14.52 9.20 8.76 5.60 5.30
IMIXE1 10.83 8.95 13.01 12.95 8.95 7.99 5.37 4.84 ■
IMIXE2 11.23 9.76 15.25 14.64 9.16 8.82 5.68 5.34
INQUIR 84.33 33.77 158.19 105.57 126.40 62.67 80.88 36.17
INSTR 59.97 38.53 136.58 127.OC 75.48 t 72.59 40.21 41.82 c
INTDA2 8.47 20.38 22.99 39.92 13.03 18.74 6.95 11.27 .-.

INTDB2 10.47 30.22 35.98 69.69 24.60 29.45 15.45 17.61
INTDB3 9.87 22.84 22.91 46.93 20.19 21.36 14.03 12.83
INTQA2 10.13 6.56 9.23 8.04 6.25 5.11 3.86 3.12
IOPKG 35.77 22.99 81.91 58.07 45.93 35.32 28.03 20.65
ISEQA2 15.40 7.99 15.84 10.63 10.94 6.41 6.81 3.90 >

LAVRA1 11.43 7.14 10.86 9.63 9.15 6.51 5.58 3.95 • ■

LAVRA2 11.53 7.37 11.11 10.07 9.22 6.75 5.64 4.09
LAVRB1 26.03 13.70 22.73 24.19 23.48 13.75 14.37 8.25 i

& LAVRB2 30.40 14.62 24.24 26.50 24.67 14.81 15.15 8.88 •-
% LFIRA1 10.97 8.48 14.23 12.27 9.18 7.93 5.59 4.79

LFSRA1 9.27 7.81 11.15 11.35

105

8.21 7.92 4.92 4.77
■

»■

i
>

:^:&^^:^^^ ,. ^.1,.:^^s^:^-S>^^;>^^-^>^

^■^^v^iT^^^'V^T^

UNIX AOS/VS VMS- -ISL VMS- -CSC

Program A P A P A P A P

L0AEA1 9.20 7.77 11.32 10.84 8.00 7.17 4.86 4.34
L0ECA1 9.40 7.12 10.87 9.73 7.96 6.74 4.81 4.07
L0ECA2 9.30 7.31 11.21 10.12 8.10 6.96 4.92 4.20
L0FCA1 9.43 7.81 11.13 11.46 8.27 8.09 5.04 4.87
LOSCA1 10.27 8.27 12.00 12.05 9.62 8.01 5.84 4.83
LOUIA1 9.13 7.34 11.08 10.17 8.20 6.99 4.99 4.22
LOUIA2 9.17 7.44 11.08 10.37 8.20 7.10 4.97 4.29
LRR1A1 8.97 8.07 11.39 11.43 8.04 7.49 4.78 4.53
LRR1A2 9.30 8.23 11.46 11.77 7.97 7.66 4.80 4.63
LRR3A1 9.30 8.82 12.82 12.97 8.36 8.29 4.99 5.01
LRR3A2 9.37 9.05 13.14 13.46 8.48 8.55 4.98 5.16
LVRAB1 16.57 13.52 21.01 23.72 13.26 13.53 8.08 8.12
LVRAB2 17.60 14.21 22.06 25.46 13.71 14.33 8.51 8.59
MINIA2 3.23 3.93 5.08 3.89 2.79 2.84 1.70 1.75
MTCQA2 9.63 6.02 8.99 7.11 6.06 4.62 3.70 2.83
MTESA2 11.03 6.21 10.90 7.44 8.05 4.79 5.08 2.93
MULTAl 3.97 5.39 6.94 6.10 3.25 4.08 2.00 2.50
MUTLA2 4.07 6.27 8.20 7.55 3.52 4.85 2.18 2.97
NL00A1 9.63 6.17 8.60 7.83 7.02 5.51 4.30 3.34
NL07A2 9.63 7.79 10.94 10.89 8.16 7.19 4.93 4.35
NL65A2 32.13 14.15 4 7.78 25.31 15.15 14.26 9.26 8.55
NPPCA1 9.63 7.17 10.41 9.97 7.90 7.01 4.82 4.23
NPPCA2 9.33 6.78 9.95 9.20 7.91 6.57 4.67 3.97
NRPCA1 12.87 9.54 12.73 15.20 9.35 10.18 5.67 6.10 c» NRPCA2 12.97 9.58 12.85 15.29 9.34 10.23 5.71 6.13

^.v- NULLA1 3.81 5.11 6.82 5.64 4.47 3.83 2.63 2.35
NULLA2 3.93 5.21 6.76 5.81 4.41 3.92 2.60 2.41
OPAEA1 11.07 9.66 15.21 14.75 8.98 9.20 5.50 5.55
OPBFA1 9.60 7.68 11.40 10.44 8.14 6.70 4.95 4.07
OPCEA1 11.63 9.80 14.14 16.01 9.33 10.87 5.65 6.50
OPISA1 11.83 10.79 17.01 17.26 9.48 10.45 5.68 6.29
OPNFA1 8.90 7.36 11.21 10.04 7.77 6.74 4.78 4.08
OPSCA1 11.40 9.74 14.35 14.93 10.20 9.30 6.46 5.61
PGQUA2 10.03 7.72 10.00 10.13 6.44 6.16 3.99 3.76
PIALA2 4.40 8.44 9.88 11.49 4.26 6.82 2.50 4.16
PKGEA1 41.70 17.87 63.65 39.76 82.27 25.05 37.55 14.74
PKGEA2 43.77 18.23 67.57 40.91 84.97 25.64 40.04 15.08
PRCOA2 8.73 11.36 12.88 19.28 6.73 12.18 4.17 7.29
PUZZA2 23.10 23.27 62.19 57.76 28.80 33.92 12.52 19.88
RANDA2 4.17 8.77 8.45 13.24 4.01 8.83 2.41 5.31

' RCDSA2 89.87 63.93 **«» 201.02 122.16 69.56 66.82 41.13
RENDA1 5.47 7.31 7.67 9.73 4.29 6.33 2.56 3.85
RENDA2 5.30 7.23 7.69 9.57 4.32 6.25 2.62 3.80
RPTWRI 3.70 5.29 6.94 6.70 2.90 5.36 1.77 3.23
SCHEMA 74.17 20.57 62.97 45.03 42.57 24.58 26.82 14.57
SIEVA1 3.83 6.27 6.49 7.55 3.54 4.85 2.21 2.97
SIEVA2 4.63 8.25 8.99 12.00 4.20 7.99 2.54 4.82

^ NOTE : *«»* = 1535. 62

106

k&ti&m&&^^

rVT.^y^^TVüVTJVVT»!,^ W ^ V* V" l»' w IP» \pi \y v^* cv, vv vw*. vv, vyy«!.-«vr'V v^x-rir' v^.TiT T^«ST TfTVT^jrr VT %--&-'. V-IV-'V-">--.-<T>-^>T>- -> '■j-j[r> '^-JT^J

UNIX AOS/VS VMS- -ISL VMS- •CSC
Program A P A P A P A P

S0RTA2 10.23 11.04 15.06 16.78 8.75 9.28 5.54 5.63
SQ10A2 13.50 5.89 13.50 6.90 9.81 4.51 6.26 2.76
SQPGA2 13.83 6.66 14.15 8.21 10.09 5.19 6.43 3.17
SRCRA1 8.97 9.90 14.03 14.94 8.97 8.97 5.70 5.42
TAIPA1 5.43 7.27 7.38 9.87 4.51 6.64 2.83 4.02
TAIPA2 5.63 7.97 7.64 11.23 4.63 7.38 2.97 4.46
TPGTA2 5.63 7.70 7.19 10.10 4.63 6.14 2.98 3.75
TPGTC2 9.47 14.23 13.97 28.41 8.33 18.66 5.27 11.03
TPITA1 6.27 8.04 7.82 11.12 5.05 7.06 3.17 4.28
TPITA2 6.57 8.30 8.00 11.64 5.17 7.32 3.38 4.44
TPITB1 9.93 10.71 10.75 16.68 7.44 9.81 4.78 5.92
TPITB2 11.13 11.69 11.56 18.88 8.09 10.84 5.17 6.54
TPITD1 23.73 16.61 20.98 29.91 16.19 14.83 10.08 8.94
TPITD2 28.80 18.83 24.94 35.70 18.99 17.12 11.92 10.30
TP0TA2 12.30 14.65 15.99 25.03 9.37 12.83 5.90 7.75
TP0TC2 29.90 25.63 42.70 55.21 21.76 24.38 13.54 14.61
TPSTA2 5.50 6.99 6.94 8.80 4.48 5.49 2.80 3.35
TPTCB2 8.80 9.68 9.39 13.94 6.74 7.98 4.26 4.85
TPTCC2 13.83 12.39 13.02 19.76 9.87 10.59 6.36 6.42
TPTCD2 23.10 16.63 20.74 29.96 16.10 14.85 10.24 8.95
TPUTE2 6.57 8.41 8.40 12.13 5.44 7.85 3.36 4.75
UAPAA1 10.37 9.02 12.46 14.05 8.53 9.55 5.44 5.73
VFADA1 59.27 6.51 10.07 7.96 4.32 5.07 2.86 3.10

^ VFADA2 59.43 6.91 10.80 8.66 4.53 5.42 2.96 3.31 v WHETA2 14.57 18.36 42.68 39.68 11.73 23.45 7.48 13.86
WHLPA1 3.73 4.93 6.25 5.80 3.42 4.43 2.15 2.69
WHLPA2 3.87 5.19 3.58 6.23 3.56 4.69 2.18 2.85

107

tä'&ttttyly^y^^^^

T\»7rTrö^T','lt^7r7r7'rrrv«vl'yyy''y rrv^ ■^■•^■'r,^77^>^x».ii^¥^^irr\>rTrv^T.^^:v\v\ v.wrjv-r^riNi.'^-i'^'i v ^.n^mtTHLin-TTcncm-B-^'^-* TX'T^ THTriwv»

APPENDIX N

Plot of the Actiial vs Predicted Conpile Times

O
8

J
O o

8
N

Ü
1—i—i—!—i—i—r
R« « ^ M O 0

M M N M N «-

n
ff

I

(ta»t ui aHii ndo) aoNVwaoiaad ndo

108

&^fl&^^

wirrrTy^ynrsrrY^irinr^rriirsirvT^ ^T-'V »-.T^W:I ■rr«.- ».i < i ^ K-I »t-i ^.i^-ut-u^»--».™—».

« V^ :
z
o ^==_gi
V)
(H -^ ^ ^
< *J2^^
CL (ftf :
2 -^l^sl
o "**■ "^ ti 1

05))) :
0 c C ff ■

hil ^V 1 0i vf^C
z| /) ll ' <l ((ff

2? "*^^^^^/5^?
Qii ^ 5 ■ o3

xv ^ : u. ^^ 3 ■ cc ^\ \i -
Lü Jy J)^ ■
Q.

$!% "

D
CL ?>[;
ü 1 1 1 1 1 r 1 1 .ll

u
0

M

W

8
85SSSa822

(•oM ui ana ndo) aoNvnaojuad ndo

^

109

t^^^<;A:<^^^^::^^<^^^:':"--:^:-:::-:;:^w
ifciiiiilrli'imilMiiilil iii

<.<. ^•'"i 'i'" Vi 1V1 J^MyM^

KT;^^j^riTJ'.''y-''*-''-vT^

3
O o

s
5?

§

&

(MM ui anu ndo) aoKvrwoiaad ndo

110

ttt&üü^^

K^^>r*:y.^.T-'^-T'T-:''«T,^^'vvvvjv^^ w -> -> • .^, v w>

Bibliography

1. Barnes, J. G. P. Programming in Ada. London:
Addison-Wesley Publishing Company, 1984.

2. Beser, N. "Foundations and Experiments in Software
Science," ACM SIGMETRICS Performance Evaluation Review.
1980, pp 773-779.

3. Boehm, B. W. "Software Life Cycle Factors", Handbook
of Software Engineering, edited by C. R. Vick and C. V.
Ramamoorthy. New York: Van Nostrand Reinhold Company,
1984.

4. Booch, Grady. Software Engineering with Ada. Menlo
Park, California: The Benjamin/Cummings Publishing
Company, 1983.

b. Conte, S. D., V. Y. Shen and K. Dickey. "On the Effect
of Different Counting Rules for Control Flow Operators
on Software Science Metrics in FORTRAN," Performance
Evaluation Review. Ü (2): (Summer 1982).

6. Coulter, N. S. "Software Science and Cognitive
Psychology," IEEE Trans. Software Engineering. SE-9,
2(1983), pp 166-171.

7. Department of Defense. Military Standard: Ada
Programming Language - AN8I/MIL-8TP-1815A» Washington,
D.C, January 1983.

8. Elshoff, J. L. "An Investigation into the Effects of
the Counting Method Used on Software Science
Measurements," ACM 3IGPLAN Noticea. 11 (2): 30-45
(February 1978).

9. Fairley, Richard E. Software Engineering Concepts.
New York: McGraw-Hill Book Company, 1985.

10. Fitzsimmons, Ann and Tom Love. "A Review and Evaluation
of Software Science," ACM Computer Surveys. 10 (1):
3-17 (March 1978).

11. Halstead, Maurice H. Elements of Software Science.
New York: Elsevier North_Holland Inc., 1977.

12. Hook, Audrey A. and others. "User's Manual for the
Prototype Ada Compiler Evaluation Capability (ACEC)
Version 1", IDA Paper P-1879. (October 1985).

13. Kavi, Krlsha M. and U. B. Jackson. "Effect of
(.^\ Declarations on Software Metrics," Performance
'y/ Evaluation Review. 11 (2): (Summer 1982).

Ill

L^a^^^^^^^

ly^^-gri-y-r^^j^^^^Tr^T^rryTTTTTT^ VT« VT VVr'r'\'rV VT-'Y-o ST» V»\-«\-«TL-» yWV»T;-S V^-U^'T* \-*\.~* l"1- v. ' \~* VT« \,1

14. Kolence, Kenneth W. An Introduction to Software
Physics. New York: McGraw-Hill Book Company, 1985.

15. Leathrum, J. F. Foundation of Software Design.
Reston Virginia: Reston Publishing Company, Ine, 1983.

16. Lee, R. C. T. "Compilers", HandbggK Ol SffftWftrg
Engineering, edited by C. R. Vick and C. V. Ramamoorthy.
New York : Van Nostrand Reinhold Company, 1984.

17. Maness, Capt Robert S. Validation of a Structural Model
of Computer Compile Time. MS Thesis, GCS/ENG/86D. School
of Engineering, Air Force Institute of Technology, (AU),
Wright-Patterson AFB OH, December 1986.

18. McClave, James T. and P. George Benson. Statistics for
Buaineaa and Economica: Second Edition. San Francisco
and Santa Clara, California: Dellen Publishing Company,
1982.

19. Misek-Falkoff, Linda D. "A Unification of Halstead's
Software Science Counting Rules for Programs and English
Text, and a Claim Space Approach to Extensions,"
Performance Evaluation Review. JJL (2): 80-114 (Summer
1982).

20. Relph, Richard, Steve Hahn, and Fred Vilea.
"Benchmarking C Compilers," Dr. Dobb'a Journal of
Software Tools: 11 (8): 30-50 (August 1986).

21. Salt, Norman F. "Defining Software Counting
Strategies," ACM SIGPLAN Noticea. ü (3): 58-67 (March
1982).

22. SAS Institute Inc. SAS Uaer'a Guide: Statistics Veraion
5 Edition. Gary, N.C.: SAS Institute Inc, 1985 956 pp.

23. Shen, Vincent Y., Samuel D. Conte, and H. E. Dunsmore.
"Software Science Revisted: A Critical Analysis of the
Theory and its Empirical Support," IEEE Trana. Software
Engineering. SB-9, 2 (1983), pp 155-165.

24. Trembly, Jean-Paul and Paul G. Sorenson. The Theory and
Practice of Compiler Writing. New York: McGraw-Hill Book
Company, 1985.

25. Witt, Donald J. Uaing Ada in the Real-Time Avionics
Environment: Issues and Conclusions. MS Thesis
QCS/MA/85D-6. School of Engineering, Air Force Institute
of Technology, (AU), Wright-Paterson AFB OH, December
1985.

112

^>>w^v^^:Mv^syM^^^

I^W"-^^^^"^^^^^^

26. Wolverton, R.W. "Software Costing," Handbook of
Software Engineering, edited by C. R. Vick and C. V.
Ramamoorthy. New York: Van Nostrand Reinhold Company,
1984.

27. Young, S. J. An Introduction to Ada. Chichester,
England: Ellis Horwood Limited, 1983.

28. Zweben, S. and K. Fung. "Exploring Software Science
Relations in COBOL and APL," Proceedings. COMPSAC. 1979,
702-707.

113

K^iraM^M*!^^^

JlflWWW^JW^J^V^J^^^

^^J?

4&

VITA

Dennis M. Miller

 . He graduated from high school in

Wiesbaden, West Germany in 1976 and attended North Dakota

State University, Fargo, North Dakota, from which he

received the degree of Bachelor of Science in Electrical and

Electronic Engineering in May 1981. Upon graduation, he

received a commission in the USAF through the Reserve

Officer Training Corps program and entered the Air Force on

active duty in July 1981. His first assignment as an Air

Force Officer was to the 1000th Satellite Operations Group

at Offutt AFB, Nebraska. His duty was as a System

Integration Engineer, with responsibility for testing,

integrating, and evaluating system upgrades for the

command/control and telemetry processing systems in the

Defense Meteorological Satellite Program; including

telemetry analysis, communication, data base and retrieval

systems. He left Nebraska when assigned to the Air Force

Institute of Technology, School of Engineering, at

Wright-Patterson AFB, Ohio in May of 1985.

Permanent address:

114

kJ^^M^a^^

fS' u.VT.,-T'J-T^^\^^y^J,^\'*T~L*jyr' J/; TT•»-irwywvys TT n^.f'.' y.1/■■. ''■rw^'jjr^r„ -^ <-..- .■

UNCLASSTFTm
SECURITY CLASSIFICATION OF THIS PAGE A/77A£A.i

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

M. REPORT SECURITY CLASSIFICATION
£-/, UNCLASSIFIED

lb. RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/86D-7

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6«. NAME OF PERFORMING ORGANIZATION

School of Engineering
6b. OFFICE SYMBOL

(If applicable)

AFIT/EN

7a. NAME OF MONITORING ORGANIZATION

6c ADDRESS (Oty, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (C/ty, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (C/ty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

see Box 19

I PERSONAL AUTHOR{S)

 Miller. Dennis Max-David. Capt. USAF u.
13«. TYPE OF REPORT

MS Thesis
13b. TIME COVERED

FROM TO
14. DATE OF REPORT (Year, Month, Day)

 BaaadaaE 1?86
15. PAGE COUNT

MA
16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD

09
05

GROUP

02
SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Software Science, Carpiler perfonnance, Ada,
Ccrpilers, Carpiler Evaluation, Halstead

19. ABSTRACT (Contitiue on reverse if necessary and identify by block number)

Title: Application of Hal stead's Timing
Model to Predict the Cotpilation
Time of Ada Canpilers

ABPto»d .0T\P*le «Ua..« IAW, AFH IM-j/.

D&L lo. K-occh and Pr0l...lonalD.«loPm.rt
W, For« Insülut» ol lechnclcgv CWTCT
y/ilghl-Pattoraon At"B WH 4;)'';iJ

Thesis Chairman: Wade H. Shaw, Jr., Ph.D.
Captain, U.S. Army
Assistant Professor of Electrical Engineering

'0. DISTRIBUTION/AVAILABILITY OF ABSTRACT
Bj UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

I 22«. NAME OF RESPONSIBLE INDIVIDUAL
I Wade H. Shaw Jr.. PhD. CPT. U.S Army

22b. TELEPHONE (/nc/ude Area Code)
(513) 255-3576

22c. OFFICE SYMBOL
AFIT/EN

OD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

■ ^^^^^

irPFTr*7rT***7T*TrT™rTyF*7rTr*'Tr^^^ ~*^x-* ^■rar* r*.r*mr*<Ä\

UNCLASSIFIED
MCUNITV CLASSIFICATION OP THIS PAGE

With the development of Ada, the official programming
language of the DoD, methods are needed to validate and
evaluate various Ada compilers to determine if the compilers
meet the DoD requirements. This investigation introduces a
new tool using Halstead's Software Science theory to predict
compile time and to evaluate the efficiency of alternative
Ada compilers.

The analysis was accomplished by selecting a model based
on Halstead's time equation. Once the model was
established, programs from a benchmark test suite were used
to evaluate the predictive power of the model and to develop
a performance index for comparisons.

The results suggest that the compiler model is useful in
predicting compile time, but of more importance, it is
useful in the development of a performance index. The study
shows that the average compilation time is not a good
measure for comparing performance rates. Therefore, with
further research, the compiler model may be a useful tool
for software analysts.

TTMTT.AggTFTFn

^^^^^&^^^

